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METHODOLOGICAL STUDIES

Covariate Balance for Observational Effectiveness Studies: A
Comparison of Matching and Weighting
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aSchool of Education and Human Development, University of Virginia, Charlottesville, Virginia, USA;
bDepartment of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland,
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ABSTRACT
Propensity score matching and weighting methods are often used in
observational effectiveness studies to reduce imbalance between
treated and untreated groups on a set of potential confounders.
However, much of the prior methodological literature on matching
and weighting has yet to examine performance for scenarios with a
majority of treated units, as is often encountered with programs and
interventions that have been widely disseminated or “scaled-up.”
Using a series of Monte Carlo simulations, we compare the perform-
ance of k:1 matching with replacement and weighting methods with
respect to covariate balance, bias, and mean squared error. Results
indicate that the accuracy of all methods declined as treatment
prevalence increased. While weighting produced the largest reduc-
tion in covariate imbalance, 1:1 matching with replacement provided
the most unbiased treatment effect estimates. An applied example
using empirical school-level data is provided to further illustrate the
application and interpretation of these methods to a real-world
scale-up effort. We conclude by considering the implications of pro-
pensity score methods for observational effectiveness studies with a
particular focus on educational research.
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Experimentation through random assignment ensures that all variables related to both
treatment receipt and the outcome (i.e., confounders) are balanced between treatment
conditions. However, random assignment is not always feasible and is particularly
unlikely to occur within observational research, frequently resulting in treated and
untreated groups with unbalanced covariate distributions. Only after covariate balance
between treatment groups is achieved may researchers obtain unbiased treatment effect
estimates. Analytic approaches such as propensity score methods can be used to correct
for such confounding. The propensity score can thus be viewed as a “balancing score,”
such that units with similar covariate distributions will have similar propensity scores,
attempting to mimic random assignment (Rosenbaum & Rubin, 1983).
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One condition often overlooked in the methodological literature on propensity scores is
treatment prevalence, or the proportion of units exposed to treatment. Treatment prevalence
is of great interest to researchers examining the effectiveness of interventions when widely
disseminated or “brought to scale” because when effectively scaling an intervention, there is
typically an increase in the proportion of units exposed to the intervention over time. Most
notably, once more than 50% of a population (e.g., a school district, a state, or students) is
exposed to treatment, matching with replacement becomes necessary, as failing to do so
would result in the discarding of potentially important units, ultimately reducing statistical
power in effect estimation (Stuart, 2010). When weighting for designs with a majority of
treated units, certain untreated units may receive large or extreme weights if they comprise
most of the information about the counterfactual, leading to increased variability in effect
estimation (Austin & Stuart, 2015a; Hainmueller, 2012).

This article aims to fill this methodological gap in the educational literature by inves-
tigating the performance of propensity score matching and weighting methods with
respect to covariate balance for scenarios with varying degrees of treatment prevalence.
This issue is of particular concern within the context of examining the effectiveness of a
widely disseminated (or scaled-up) intervention, in which a majority of the sample
exposed to treatment. More specifically, we build upon prior simulation research by
Hainmueller (2012) and Colson et al. (2016) who compared inverse probability of treat-
ment weighting and nearest neighbor matching with replacement for designs with treat-
ment prevalence ranging from 0.2 to 0.5. By expanding our simulation to consider
scenarios with a majority of units exposed to treatment, we broaden our understanding
of propensity score weighting and matching methods to be more applicable to observa-
tional effectiveness designs. Additionally, we consider increasing degrees of imbalance in
baseline covariates, representing scenarios in which there is an increasing difficulty in
establishing covariate balance.

In fact, such methodological work has the potential to advance research on the effect-
iveness of educational interventions or programs already in wide use in “real-world” set-
tings (see Fagan et al., 2019; Gottfredson et al., 2015). As compared to the amount of
efficacy research in education and other fields such as public health or medicine, there
is a paucity of research on the effectiveness of interventions. Such concerns in part
motivated the U.S. Department of Education’s funding for what was initially coined “i3”
(Investment in Innovation) and is currently the Education Innovation and Research
funding (Office of Elementary and Secondary Education, 2021). Toward that end, we
provide an applied example of a widely used and scaled educational preventive interven-
tion framework, called Positive Behavioral Interventions and Supports, for which we use
empirical data to illustrate the application and performance of different propensity score
matching and weighting methods within a high treatment prevalence scenario.

Potential Outcomes Framework

Using the potential outcomes framework described by Neyman (1923/1990) and Rubin
(1974), consider the simplest case in which there are two groups or conditions (i.e.,
treatment and control), observed at a single time point. Let Z denote a binary treatment
indicator. Specifically, each individual i is considered to have a potential outcome Y1

i
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associated with participating in the treatment condition (Zi ¼ 1), as well as a potential
outcome Y0

i associated with participating in the non-treated (control) condition (Zi ¼
0). The treatment effect for individual i is then defined as:

di ¼ Yi
1� Yi

0, (1)

with the population average treatment effect (ATE) is given as:

d ¼ E Y1 � Y0½ �: (2)

As only a single potential outcome for each individual is ever directly observed, several
assumptions must be met for the expectations of the potential outcomes to be identified.
One key assumption in observational studies is that treatment assignment is strongly ignor-
able. Rosenbaum and Rubin (1983) demonstrated that unbiased estimates of the ATE (d̂)
can be obtained if treatment assignment Z is independent of the potential outcome distribu-
tion of Y1 and Y0, conditional on an observed vector of covariates X, and that no covariate
values are associated with a probability of treatment equal to zero or one (positivity assump-
tion). That is, Y1, Y0ð Þ?ZjX and 0 < P Z ¼ 1jXð Þ < 1: Additionally, the potential outcome
distributions are also independent of treatment assignment Z given the propensity score
p Xð Þ, while treatment assignment Z is independent of the observed set of covariates X, con-
ditional on the propensity score:

Y1,Y0ð Þ?Zjp Xð Þ and Z?X jp Xð Þ: (3)

The stable unit treatment value assumption (Rubin, 1986) is further assumed, requir-
ing the potential outcomes of individual i to be independent of both the treatment
assignment mechanism and the treatment status of other individuals.

To balance the treatment and control groups, probabilities of being in the treatment
group are generated for all individuals. This probability is known as the propensity
score, or the propensity of exposure to the treatment condition. The most common esti-
mation function is a logistic regression model:

P Zi ¼ 1jXið Þ ¼ E Xið Þ ¼ exp Xibð Þ
1þ exp Xibð Þ : (4)

where Xi represents a vector of observed covariates for individual i, while b represents a
vector of associated parameter coefficients. After estimating propensity scores, individuals
may be matched according to the similarity of scores; this is known as propensity score
matching. Propensity scores may also be used as inverse probability weights in estimating
the ATE, known as inverse probability of treatment weighting (Hern�an & Robins, 2020).
Both matching and weighting according to the propensity score have been shown to pro-
duce conditional independence between treatment assignment the outcome (Rosenbaum
& Rubin, 1983), allowing for more accurate estimates of treatment effects.

In addition to estimating the ATE, propensity scores are commonly used to estimate the
average treatment effect on the treated (ATT). The ATT is defined as the difference in the
expected value of the potential outcome for all individuals in the treatment group, had they
been exposed to the control group (Y i

0 j Zi ¼ 1), from the expected value of the outcome
for all individuals in the treatment group (Y i

1 j Zi ¼ 1; Heckman & Robb, 1984):

d ¼ E Y1
i jZi ¼ 1

� ��E Y0
i jZi ¼ 1

� �
: (5)
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Evaluation researchers and policymakers are often more substantively interested in
the ATT than the ATE. In practice, school administrators may be interested in the treat-
ment effect of a new behavioral intervention program for those who chose to participate
in the program (ATT), not the effect for all students in the population (ATE).

Matching and Weighting Methods

Propensity score analyses provide multiple advantages over traditional regression-based
analyses. For example, the propensity score is able to effectively summarize all covariate dis-
tributions in a single dimension, helping avoid the “curse of dimensionality” often encoun-
tered in regression-adjustment approaches. Additionally, propensity scores are estimated
without reference to the eventual outcome of interest, often viewed as a more transparent
method than regression adjustment (Greifer & Stuart, 2021). These properties make propen-
sity score methods an attractive choice for researchers investigating effects in observational
designs. Specific to the field of education, a number of more recent studies have explored the
methodological implications of matching (Keele et al., 2020; Page et al., 2020; Pimentel et al.,
2018; Rosenbaum, 2020) and weighting (Bishop et al., 2018; Fuentes et al., 2021; W. L. Leite
et al., 2019) methods, demonstrating the utility and demand for robust causal inference
methodology. In what follows, we describe each of these methods in greater detail, highlight
advantages, disadvantages, and implications of certain method choices.

Matching
After estimating propensity scores, pairs of treated and untreated individuals may then be
matched based according to the similarity of their propensity scores. One of the most com-
mon matching strategies is 1:1 nearest neighbor matching, in which a single untreated unit is
matched with a single treated unit based on a distance measure (typically pairwise differences
in propensity scores between units). One key issue researchers face when conducting match-
ing involves whether to match with or without replacement. When matching without replace-
ment, after a single untreated unit is matched with a single treated unit, the untreated unit
can no longer be paired with another treated unit. This has the potential to result in poor-
quality matches for scenarios in which there are few untreated units. Oppositely, matching
with replacement allows a single untreated unit to be matched with multiple treated units.
Allowing for replacement may improve match quality if a given untreated unit is considered
to be the best match (in terms of closest distance) for multiple treated units. Prior simulations
by Austin (2014) demonstrated that matching with and without replacement both produce
unbiased treatment effect estimates. However, when there is weak overlap in the covariate
distributions, matching with replacement produces smaller standard errors.

One caveat to matching with replacement is that weights must be used in subsequent
analyses (e.g., a weighted linear regression). The weights generated by matching with
replacement reflect the frequency with which each untreated unit was matched (W.
Leite, 2017). Let wi represent the weight for unit i. Furthermore, let wi ¼ 1 for all
treated units (Zi ¼ 1). Then, weights for each untreated unit (Zi ¼ 0) are calculated as:

wi ¼ n0
n1

�
Xni
m¼1

1
Mm

, (6)
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in which n0 is the total number of matched cases, n1 is the total number of treated
cases, ni is the number of treated cases unit i was matched to, and Mm is the total num-
ber of matches (including unit i) that each treated case received. Here, the untreated
weights are scaled to sum to the total number of matched cases. Such weights are not
utilized when conducting matching without replacement, as each untreated unit may
only be matched with a single treated unit.

A second key issue involves k:1 matching, a matching strategy that finds and matches not
one, but k untreated units to each treated unit. This may be particularly useful for scenarios
with a majority of untreated units. For example, prior simulation research by Austin (2010)
has demonstrated a bias-variance tradeoff with increasing k. While increasing the number of
untreated to treated matches tends to increase precision in treatment effect estimates, k:1
matching may simultaneously increase dissimilarity in the matched sample, ultimately
increasing bias in effect estimates (Stuart, 2010). It is worth noting that while nearest neigh-
bor matching is most commonly used in the health and social sciences (Thoemmes & Kim,
2011), other types of matching may provide certain benefits. For example, both Cepeda et al.
(2003) and Ming and Rosenbaum (2000) found variable ratio matching, in which a variable
number of untreated units are matched to each treated unit, resulted in better covariate bal-
ance but larger standard errors of the estimated treatment effect as compared to k:1 match-
ing. Other types of matching, such as the optimal matching algorithm, entertain all possible
matching combinations before declaring a match. While optimal matching has been shown
to be remove more bias when allowing for a variable number of nearest neighbors (Gu &
Rosenbaum, 1993), simulation studies have demonstrated nearest neighbor matching is
more effective in reducing covariate imbalance than optimal matching when the untreated
to treated ratio is fixed (Austin, 2014). Nonetheless, because nearest neighbor matching is
the most commonly used matching approach, we focus on this particular matching strategy.

A third issue regards the use of a caliper or trimming. When using a caliper, no units fur-
ther apart than some pre-specified distance measure are allowed to be matched. For
example, if a distance measure of 0.2 standard deviations of the propensity score was chosen
as caliper width, only those with propensity scores less than 0.2 standard deviations away
from the unit of interest could be considered to be matched with. Austin (2009b, 2011) and
others have demonstrated that caliper widths of 0.6 and 0.2 standard deviations of the pro-
pensity score remove approximately 90% and 99% of bias due to measured confounders,
respectively, by enforcing more similar matches. Calipers are similar but distinct from trim-
ming, which refers to dropping units with propensity scores outside of a pre-specified range.
This is sometimes referred to as the “overlap problem” in which Crump et al. (2009) suggest
discarding all units outside the range of (0.1, 0.9) standard deviations of the propensity score.
However, one limitation to matching with a specified caliper width or trimming is that
observations outside of the region of common support are often discarded, reducing the ana-
lytic sample size, potentially negatively impacting power (Ho et al., 2011a). Additionally, dis-
carding observations outside of the region of common support shifts the estimand as the
estimated treatment effect is no longer in regard to a full sample of treated units.

Weighting
Instead of matching on the propensity score, propensity scores can be used as unit
weights when estimating the treatment effect. The intuition is that treated and untreated
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units are reweighted to be representative of the population of interest. The inverse prob-
ability of treatment weight (IPTW) is defined as wi ¼ Zi

êi
þ 1�Zi

1�ê i
, where êi is the esti-

mated propensity score for unit i. Letting Yi represent the observed outcome for unit i,
the ATE may be estimated as (Austin & Stuart, 2015a):

d̂ ¼ 1
N

XN
i¼1

ZiYi

êi

" #
� 1

N

XN
i¼1

ð1�ZiÞYi

1� êi

" #
, (7)

which represents the difference in the weighted average outcomes between the treated
and untreated groups. To instead estimate the ATT, a new set of weights can be calcu-
lated as wi ¼ Zi þ 1� Zið Þ ê i

1�ê i
: Thus, while the weights used to estimate the ATE

weight the treated and untreated groups to their respective populations, the weights
used to estimate the ATT weight the untreated group only (to a representative popula-
tion of the treatment group), as weights for those in the treated group are equal to one.

One concern with IPTW is that it can generate extreme or large weights. As the weights
are directly related to the propensity scores, a (misspecified) propensity score model that
produces extreme propensity scores may yield extreme weights. For example, when using
weights to estimate the ATE, treated units with a propensity score close to zero may have
very large weights. Similarly, when using weights to estimate the ATT, untreated units with
a propensity score close to one may also have very large weights. Such large weights can
potentially increase the standard error of the estimated treatment effect as well as increase
bias (Harder et al., 2010; W. Leite, 2017). Thus, a misspecified propensity score model may
derive extreme weights, although this may also be due to a lack of common support.

Solutions to address extreme weights include improving the specification of the pro-
pensity score model, and to conduct weight trimming or truncating (B. K. Lee et al.,
2011). Trimming is typically performed by setting weights that exceed a specified thresh-
old to that given threshold, often determined by quantiles of the distribution. For
example, units with weights above the 95th percentile may be set equal to the 95th per-
centile (and vice versa for the 5th percentile). Prior research has demonstrated that weight
trimming may decrease standard errors in treatment effect estimates, though weight trim-
ming may also bias estimates depending on the estimation method (B. K. Lee et al., 2011;
Thoemmes & Ong, 2016). However, there is no singular guideline for the optimal level of
weight trimming. Thus, researchers conducting IPTW must carefully inspect the distribu-
tion of weights and adjust either the propensity score model or the weights themselves.

Matching versus Weighting
When matching with replacement, matching weights are ultimately used in outcome estima-
tion to appropriately account for untreated units matched to multiple treated units. This begs
the question, “If matching is a means to getting weights, why not weight directly?” The pur-
pose of matching and weighting methods is the same, namely, to reduce bias in treatment
effect estimates due to confounders for observational research. However, matching methods
may provide an advantage in terms of robustness to model specifications. Generally, matching
methods are less sensitive to correct specification in propensity score estimation than weight-
ing methods (Waernbaum, 2012). As described earlier, extreme propensity scores may result
in extreme weights, potentially resulting in effect estimates driven by a few units with large
weights. For matching methods, the value of the propensity score itself is not directly used to
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compute matching weights. Additionally, matching methods allow for many possibilities to
customize the matching procedure, such as deciding on a particular distance measure, the
matching method to be used, whether or not to match with replacement, the number of
untreated units to match with each treated unit, and the matching order, among others.
Although this may result in a more cumbersome model building process than weighting, this
has the advantages of decreasing bias and improving precision in effect estimation. Weighting
can allow for a more efficient model building process, although researchers often customize
the type of weighting (e.g., kernel, regularization, and entropy balancing weights). In general,
weighting may be preferred to matching when: (a) the form of the exposure model is known,
or (b) no units have extreme propensity scores. However, in practice the form of the exposure
model is generally not well known, favoring matching methods. See Greifer and Stuart (2021)
for a more thorough comparison of matching and weighting methods.

Use of Propensity Score Methods in Observational Effectiveness Studies

As noted in the introduction, the current investigation of the performance of propensity
score matching and weighting methods with respect to covariate balance for scenarios
with varying degrees of treatment prevalence has the potential to inform observational
effectiveness research on the “real-world” implementation of widely disseminated inter-
ventions; those effects may inherently differ from the experimental efficacy or even
quasi-experimental study designs used in prior studies due to treatment prevalence dif-
ferences. This process, in which the adoption of innovation varies throughout the course
of an intervention results for the “diffusion of innovations” (Rogers, 1962), whereby the
number of units implementing treatment would be expected to increase over time.
Additionally, effectiveness research of a scaled intervention is likely to include relatively
large proportions of the sample implementing treatment, such as more than 50% of
units as treatment units (see Fagan et al., 2019; Gottfredson et al., 2015 for additional
information on effectiveness research). In such instances of a scale-up, the number of
untreated units is likely outnumbered by the number of treated units. As a result,
matching with replacement becomes essential to ensure each treated unit is matched
with at least one untreated unit. Additionally, the sensitivity of the weighting procedure
to the sample specification may result in extreme weights.

Much of the previous simulation literature examining propensity score matching and
weighting has only considered a relatively small proportion of treated units. For example,
Austin (2009a) only considered a constant 10% of units treated, whereas Austin (2010)
considered a range from 2% treated to 15% treated. Moreover, because the proportion of
treated units was so small, both studies used matching without replacement. While Colson
et al. (2016) considered a sample of 45% treated units for their simulations, this proportion
is still smaller than those expected within observational effectiveness research of scaled-up
interventions. Prior literature has yet to examine how propensity score matching and
weighting perform for scenarios in which 50% or more of the sample is receiving treat-
ment. This feature, common to observational effectiveness research of widely disseminated
interventions, suggests the utility of matching with replacement to retain the original sam-
ple. Taken together, this article extends previous simulation research on matching and
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weighting methods by comparing these methods for data with a range of treatment preva-
lence rates while also matching with replacement.

The Present Study

We investigated the performance of k:1 matching with replacement and IPTW across
increasing levels of treatment prevalence. As the performance of these propensity score
methods has yet to be examined for scenarios with a majority of treated units, the results
from our study help inform observational research designs more broadly, with specific
applicability toward observational effectiveness studies of widely disseminated interven-
tions. Building upon prior simulation research, we conducted a series of Monte Carlo sim-
ulations to examine the performance of these two propensity score methods across a
variety of scenarios faced by applied researchers. We build upon prior simulation research
by Hainmueller (2012) and Colson et al. (2016) who compared inverse probability of treat-
ment weighting and nearest neighbor matching with replacement for designs with treat-
ment prevalence ranging from 0.2 to 0.5. By expanding our simulation to consider
scenarios with a majority of units exposed to treatment, we broaden our understanding of
propensity score weighting and matching methods to be more applicable to intervention
scale-up research. Additionally, we consider increasing degrees of imbalance in baseline
covariates, representing scenarios in which there is an increasing difficulty in establishing
covariate balance. An applied example using empirical data from a widely disseminated
educational framework implemented in all states in the U.S. is further provided to illus-
trate the application and performance of propensity score matching and weighting meth-
ods for observational effectiveness studies with a high treatment prevalence.

Method

Design of the Simulation

To investigate the effect of the proportion of sample exposed to treatment we simulated
data where the following design factors were manipulated: treatment prevalence, baseline
imbalance, sample size, number of covariates, and propensity score method. The values
and methods chosen for the simulation conditions are informed by previous propensity
score simulation research and prior applied education research; they are meant to repre-
sent a broad range of designs researchers face in practice. Each of the manipulated fac-
tors are described below.

Treatment Prevalence
Previous simulation research on propensity score methods has not examined samples
with a majority of units exposed to treatment. As described earlier, a large prevalence of
treated units in the sample is a scenario often encountered in observational scale-up
designs (see Gottfredson et al., 2015). However, prior simulation research has explored
ratios of treated to untreated units less than or equal to 0.55 (Austin, 2014; Colson
et al., 2016; W. L. Leite et al., 2019). As such, values of treatment prevalence were
manipulated to p¼ .2,.4,.6, and .8. Importantly, the two conditions with a majority of
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treated units have not been explored in prior propensity score literature and are most
relevant for applied researchers using propensity score methods for observational effect-
iveness studies of scaled interventions.

Baseline Imbalance
The degree of baseline imbalance represents the standardized mean difference in covari-
ate values for the treated and untreated groups. For continuous variables, the standar-
dized mean difference (d) is defined as:

d ¼ Xt � Xc

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
st2 þ sc2

2

r ,
(8)

where Xt and Xc represent the mean of the covariate for the treatment and control groups,
respectively, while st2 and sc2 represent the variance of the covariate for the treatment and
control groups, respectively. Standardized mean differences larger than 0.10 have been sug-
gested as representing meaningful imbalance (Austin & Mamdani, 2006). Accordingly,
standardized mean difference values at baseline were manipulated to d¼ 0.2, 0.3, and 0.5
For two populations of equal size, a standardized mean difference of d¼ 0.2 yields approxi-
mately 85% overlap between the distributions; d¼ 0.3 yields approximately 79% overlap;
and d¼ 0.5 yields 67% overlap (Cohen, 1988). Thus, the larger the standardized mean differ-
ence value in baseline covariates, the stronger the separation between the treated and
untreated distributions (i.e., less overlap), representing a scenario that is increasingly difficult
for a given propensity score method to achieve balance.

Sample Size
Sample sizes were varied to be N¼ 250 and 500, representing a small to medium sample
size commonly found in school-based and student-based studies (Bradshaw et al., 2021;
A. Lee & Gage, 2020). Moreover, these values are similar to or smaller than those used
in prior propensity score simulations (Austin & Stuart, 2015b; Stuart et al., 2013;
Whittaker, 2020), thus representing a lower end of sample sizes.

Number of Covariates
The number of baseline covariates were set to X¼ 10 and 20. A common number of
covariates included in previous propensity score matching and weighting studies is
10 (Austin & Stuart, 2015b; W. L. Leite et al., 2019). While examples of researchers
using propensity score methods to balance more than 50 covariates may be more
common in the medical literature (see Austin et al., 2020), it may not be feasible to
include a large set of covariates, particularly in smaller samples (Stuart, 2010).

Propensity Score Method
Finally, we compare propensity score matching and weighting methods by examining
1:1 matching with replacement, 3:1 matching with replacement, 5:1 matching with
replacement, and ATT weighting. For matching, k:1 greedy nearest neighbor matching
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with replacement was used to match cases on the estimated propensity score. The
greedy algorithm matches treatment units with control units without considering a glo-
bal distance measure (e.g., Mahalanobis distance; Gu & Rosenbaum, 1993). No caliper
was used in the matching process to allow for a retention of the full sample for analyses
without changing the quantity of interest (Ho et al., 2011). For weighting, probability
weights were calculated as wi ¼ Zi þ 1� Zið Þ ê i

1�ê i
: Thus, we refer to this as ATT weight-

ing. For both matching and weighting, a parametric logistic regression, in which all
covariates were linearly related to a binary treatment variable, was used to estimate pro-
pensity scores. In all cases, the ATT was the estimand of interest. This resulted in a total
of 4 � 3 � 2 � 2 � 4¼ 192 unique simulation cells. A total of 1,000 datasets were gen-
erated and analyzed according to each condition.

Data Generation

For each subject, either 10 or 20 baseline covariates were drawn from independent
standard normal distributions. The treatment-selection model for the ten-covariate scen-
ario was given as:

logit Pr Z ¼ 1ð Þ½ � ¼ a0 þ a1X1 þ a1X2 þ a1X3 þ a1X4 þ a1X5

þ a1X6 þ a1X7 þ a1X4X5 þ a1X1X1 þ a1X7X7,
(9)

and for the 20-covariate scenario as:

logit Pr Z ¼ 1ð Þ½ � ¼ a0 þ a1X1 þ a1X2 þ a1X3 þ a1X4 þ a1X5 þ a1X6

þ a1X7 þ a1X8 þ a1X9 þ a1X10 þ a1X11 þ a1X12 þ a1X13 þ a1X14

þa1X9X10 þ a1X7X8 þ a1X1X1 þ a1X10X10 þ a1X3X3 þ a1X7X7:

(10)

Thus, in both scenarios the true propensity score model included non-additivity and
non-linearity, mimicking the complexity involved in real-world data. To determine the
correct intercept value a0 corresponding to a desired ratio of treated to untreated units,
a bisection approach was used in which numerous intercept values are attempted until a
given value results in the desired ratio within some pre-specified tolerance level; the spe-
cific algorithm is provided on lines 103-148 of the R code available at: https://github.
com/jmk7cj/Covariate-Balance. The regression coefficient a1was equal to the standar-
dized mean difference as shown in Equation (8). Then, for each subject, a binary treat-
ment indicator Z was generated from a binomial distribution with a probability of
exposure equal to ex

1þex , where x is equal to the logit probability of treatment defined in
Equations (9) and (10).

Next, potential outcomes for the ten-covariate scenario were generated as:

Y ¼ b0 þ dZ þ b1X1 þ b1X2 þ b1X3 þ b1X4 þ b1X5

þ b1X8 þ b1X9 þ b1X2X4 þ b1X3X5 þ b1X1X1 þ ei,

(11)

and for the 20-covariate scenario as:

Y ¼ b0 þ dZ þ b1X1 þ b1X2 þ b1X3 þ b1X4 þ b1X5 þ b1X6

þ b1X7 þ b1X8 þ b1X9 þ b1X10 þ b1X15 þ b1X16

þ b1X17 þ b1X18 þ b1X3X5 þ b1X1X1 þ ei:
(12)
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Here, b0 represents the intercept, b1 represents the regression coefficient, dZ repre-
sents the population treatment effect on the treated, and ei represents a residual error
term. The intercept value of b0 was fixed to 0. The treatment effect d was set to 0.5,
indicating a medium effect size. The residual error term was normally distributed ei �
N(0,1). The regression coefficient was varied such that the R2 of the covariates on the
outcome was equal to 0.3. Overall, these values are in line with those found in meta-
analyses of educational outcomes (Hedges & Hedberg, 2013) and prior simulation stud-
ies (W. L. Leite et al., 2019). Figures 1 and 2 provide a graphical depiction of the data
generation process for the 10- and 20-covariate scenarios, in which half of the covariates
were true confounders, with other variables related to treatment only, the outcome only,
or neither treatment nor the outcome.

Figure 1. Diagram of data generation process for the 10 covariate conditions. Note: Z: treatment indi-
cator; Y: outcome; X1 – X5: true confounders; X6 – X7: treatment predictors; X8 – X9: outcome predic-
tors; X10: unrelated to treatment or outcome.

Figure 2. Diagram of data generation process for the 20 covariate conditions. Note: Z: treatment indi-
cator; Y: outcome; X1 – X10: true confounders; X11 – X14: treatment predictors; X15 – X18: outcome pre-
dictors; X19 – X20: unrelated to treatment or outcome.
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Evaluation Criteria

The quality of the matching or weighting procedure was evaluated through balance
diagnostics. Steiner et al. (2010) offered a rule of thumb for sufficiently good balance
for covariates with standardized mean difference values less than 0:10j j: We focus on
the standardized mean difference averaged across the covariates after matching
or weighting.

After estimating propensity scores, a subsequent weighted linear regression model
was fit to the matched or weighted data using the survey package (Lumley, 2004), in
which the ATT was estimated and compared to the known population treatment effect
on the treated (d). We considered unadjusted estimates (i.e., a single treatment inde-
pendent variable). Absolute bias in ATT estimates was used to evaluate the model, with
values given on the scale of Y0: Finally, the performance of each method was further
evaluated using mean squared error (MSE¼ bias2 þ variance), in which the variance of
ATT estimates across replications is used. There is no single cutoff value for which to
determine adequate MSE, though values closer to zero indicate no bias, and no variabil-
ity in estimates across replications. All analyses were conducted in R (R Core Team,
2021). Matching was implemented using the MatchIt package (Ho et al., 2011), while
weighting was implemented using the WeightIt package (Greifer, 2019). All code used
for data generation and analyses is available at: https://github.com/jmk7cj/
Covariate-Balance

Results

Results with respect to the three measures of evaluation criteria (covariate imbalance,
bias, and MSE) were largely similar across the two sample size conditions (N¼ 250 and
500). Likewise, results were largely similar across the two covariate conditions (X¼ 10
and 20). Generally, covariate imbalance, bias, and MSE decreased as sample size
increased, while covariate imbalance, bias, and MSE increased as the number of covari-
ates increased, although these effects were negligible. We therefore do not present all
possible variations, but rather focus our discussion on conditions with N¼ 500 and
X¼ 10 as illustrations.

Covariate imbalance, bias, and MSE are displayed in Figure 3 whereby each column
within the plot represents a scenario with a specific baseline imbalance (e.g., d¼ 0.2, 0.4, and
0.6 “standard mean difference”). Standardized mean differences averaged across covariates
after implementing propensity score methods are presented in the top panel of Figure 3. The
middle panel provides results for absolute bias in ATT estimates. The bottom panel illus-
trates values of MSE across the replications. For each panel, the x-axis represents treatment
prevalence (p¼ .2,.4,.6, and .8). Overall, it can be seen that as baseline imbalance increases,
covariate imbalance, bias, and MSE increase, regardless of the propensity score method or
treatment prevalence.

Covariate Imbalance

Focusing on covariate imbalance (top panel), it can be seen that ATT weighting outper-
formed k:1 matching with replacement in terms of reduction in covariate imbalance
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across a range of scenarios. For scenarios with a baseline imbalance of 0.2 standardized
mean difference (averaged across the covariates), all propensity score methods achieved
sufficient balance (SMD less than 0.1), although weighting resulted in the largest reduc-
tion in imbalance. For scenarios with larger imbalance at baseline, all methods per-
formed worse. Notably, as treatment prevalence increased, it became increasingly
difficult to achieve sufficient balance. While weighting resulted in the best balance on
average, there were differences in performance within matching methods. As k:1 match-
ing increased from 1:1 to 5:1, there were greater reductions in covariate imbalance.
Particularly for scenarios with 80% treatment prevalence, 5:1 matching performed simi-
larly to ATT weighting. We note that assessing balance on higher order moments such
as the variance ratio is also important to ensure comparable groups. We do not report
such findings here as balance with respect to variance ratios was largely similar across
all simulations.

Bias

Next, we focus on bias in unadjusted ATT estimates (middle panel). Interestingly,
results appear somewhat opposite to those found regarding reduction in covariate
imbalance. While weighting resulted in the best balance across conditions, weighting
also produced the largest bias in ATT estimates across conditions. This result is some-
what perplexing at first glance, as improved balance should be directly related to the

Figure 3. Covariate imbalance, bias, and MSE after matching or weighting.
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removal of bias in effect estimates. However, simulation studies by B. K. Lee et al.
(2010) and Stuart et al. (2013) have demonstrated that balance across covariates does
not align perfectly with balance on the propensity score itself, and ultimately recom-
mend against assessing balance on the propensity score but rather on covariates. For
scenarios with larger imbalance at baseline, all propensity score methods resulted in
larger bias. For matching methods specifically, bias increased as k:1 matching increased
from 1:1 to 5:1. There was no meaningful difference in bias across treatment prevalence.

MSE

Finally, we direct our attention to MSE of unadjusted ATT estimates (bottom panel).
There is no clear or consistent best method in terms of smallest MSE for scenarios with
an average covariate baseline imbalance of d¼ 0.2 or 0.4. However, with an average
baseline imbalance of 0.6 standardized mean difference, weighting produces the largest
MSE across levels of treatment prevalence. Among the matching methods, the choice of
k:1 matching that resulted in the smallest MSE depended on the treatment prevalence.
For example, 1:1 matching has the largest MSE of the matching methods when treat-
ment prevalence equals 0.2, but the smallest MSE when treatment prevalence equals 0.6.
In general, MSE increased as baseline imbalance increased regardless of the propensity
score method, results similar to those found for covariate imbalance and bias outcomes.

For Applied Researchers: Illustrative Example

We now consider a case example using empirical Positive Behavioral Interventions and
Supports (PBIS) administrative data from the state of Maryland to illustrate the application
of k:1 matching with replacement and weighting methods within the context of a real-world
high treatment prevalence scenario. School-level data from 1,316K-12 public schools across
the state involved in the state-wide scale-up were utilized. Data from the 2007–2008 through
the 2012–2013 school year were provided by the Maryland State Department of Education.
Demographic information included variables such as student enrollment, the percent of stu-
dents receiving free and reduced-price meals, and the suspension rate. The outcome of inter-
est was the truancy rate (i.e., percent of students missing 20 or more days of school in a
school year) in a given year, as prior literature has demonstrated evidence that PBIS may
reduce school-level truancy rates (Bradshaw et al., 2021; Pas et al., 2019). PBIS implementa-
tion data was also collected each year, in which schools implementing PBIS were considered
treated units, while all other schools were considered untreated units. Because treatment
assignment was not random, selection bias between treated and untreated schools was
accounted for using either matching or weighting methods.

We focused on PBIS implementation and outcome data during two separate periods:
the 2007–2008 school year and 2013–2014 school year. We focused on these two years
to highlight a common theme in intervention scale-up study designs, wherein the pro-
portion of the sample implementing treatment grows over time. Approximately 38% of
schools implemented PBIS during the 2007–2008 school year, while approximately 66%
of schools implemented PBIS during the 2013–2014 school year. For each timepoint, the
ATT effect of PBIS on truancy rates was estimated.
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To estimate propensity scores, demographic variables from the current year were
included as predictors of current year PBIS status. Specifically, student enrollment, the
percent of students receiving free and reduced-price meals, the percent of students who
were African American, the suspension rate, and the percent of students who were pro-
ficient or advanced on the state standardized tests of reading and math were used as
predictors of PBIS status. These variables were included based on previous research by
Pas et al. (2019), with an overall aim to reduce selection bias between treated and
untreated schools.

Following the procedures outlined in the simulation study, propensity scores were
estimated using a parametric logistic regression with all covariates linearly related to a
binary PBIS indicator variable with the ATT as the estimand of interest. After estimat-
ing propensity scores, matching and weighting were conducted, including 1:1, 3:1, and
5:1 nearest neighbor matching with replacement, as well as ATT weighting.
Standardized mean differences for each covariate before and after matching or weighting
were calculated. Finally, a weighted linear regression model was fit to the data, in which
unadjusted estimates of the effect of PBIS on truancy were estimated:

Truancyi ¼ b0 þ b1PBISi þ ei (13)

Here, Truancyi is the percentage of students missing 20 or more days of school in a
school year for school i, b0 is the intercept, b1is the treatment effect of PBIS, and ei is a
residual error term.

Table 1 provides standardized mean differences before and after matching or weight-
ing. During the 2007–2008 school year, in which approximately 38% of schools were
implementing PBIS, the average standardized mean difference of the covariates at base-
line was d¼ 0.15. Overall, 5:1 matching resulted in the largest reduction in covariate
imbalance, reducing standardized mean differences by approximately 76% to an average
of d¼ 0.04. While weighting reduced standardized mean differences by approximately
58% to an average of d¼ 0.07 (within the 0.1 rule of thumb), both 3:1 and 5:1 matching

Table 1. Standardized mean differences before and after matching or weighting.
Baseline Weighting 1:1 matching 3:1 matching 5:1 matching

d d % d % d % d %

2007–2008 school year (PBIS prevalence ¼ 38%)
Enrollment �0.03 0.00 �95.1 0.09 162.1 0.08 132.2 0.05 42.3
FARMs 0.13 �0.04 �67.9 �0.13 0.3 �0.10 �19.0 �0.07 �48.2
% AA �0.01 �0.04 623.6 �0.03 370.5 �0.02 196.2 �0.01 42.3
% Suspend 0.31 �0.11 �65.1 0.05 �83.6 0.04 �88.2 0.04 �88.4
Math �0.25 0.10 �61.2 0.09 �65.6 0.01 �94.4 0.02 �91.9
Read �0.19 0.10 �49.6 0.12 �35.5 0.05 �74.4 0.04 �80.6
Average 0.15 0.07 �57.8 0.09 �44.8 0.05 �67.2 0.04 �76.4

2012� 2013 school year (PBIS prevalence 66%)
Enrollment 0.02 0.04 61.8 0.09 296.6 0.00 �88.3 0.02 7.3
FARMs 0.50 �0.07 �85.7 �0.11 �79.0 �0.04 �91.3 �0.04 �92.6
% AA 0.26 �0.10 �60.6 �0.15 �44.3 �0.06 �77.5 �0.05 �80.4
% Suspend 0.46 �0.16 �65.7 0.04 �90.7 0.03 �93.2 0.04 �91.9
Math �0.44 0.07 �84.0 0.06 �87.3 �0.01 �98.3 �0.01 �98.7
Read �0.42 0.08 �80.3 0.04 �91.4 0.01 �98.7 0.01 �98.7
Average 0.35 0.09 �75.1 0.08 �77.4 0.02 �92.9 0.03 �92.3

Note: Weighting: ATT weighting; 1:1 matching: 1:1 nearest neighbor matching with replacement, etc. d: standardized
mean difference; %: percentage reduction in absolute value standardized mean difference, in which negative values
indicate a decrease in d.
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outperformed weighting. See Figure 4 for a graphical depiction of covariate balance
before and after matching or weighting.

During the 2013–2014 school year, in which approximately 66% of schools imple-
mented PBIS, the average standardized mean difference of the covariates at baseline was
d¼ 0.35. This represents a more difficult scenario to achieve balance than the
2007–2008 school year, as treatment prevalence and the degree of imbalance at baseline
were both larger. Similar to the earlier timepoint, 5:1 matching resulted in the largest
reduction in covariate imbalance, reducing standardized mean differences by approxi-
mately 92% to an average of d¼ 0.03. Weighting performed worst, although still reduc-
ing standardized mean differences by approximately 75% to an average of d¼ 0.09, still
below the acceptable cutoff. Figure 5 provides a graphical depiction of covariate balance
before and after matching or weighting.

Discussion

This article sought to compare propensity score matching and weighting methods when
used to reduce imbalance between treated and untreated groups on a set of potential
confounders, with particular interest in the situation where the number of treated units
exceeds the number of untreated. Under such conditions, propensity score matching
with replacement becomes necessary to ensure sample size considerations. This was the
first study to examine propensity score matching and weighting methods relevant to
address this issue, and has particular significance in the field of effectiveness research on
widely disseminated (or “scaled”) interventions. As such, this study has potentially

Figure 4. 2007–2008 school year covariate imbalance before and after matching or weighting.
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important implications for the design of policy-relevant research designs which aim to
determine the impact of programs and interventions being brought to scale with imple-
mentation in a majority of relevant settings (i.e., schools).

Simulation results across a wide range of scenarios demonstrated that as treatment
prevalence increases to greater than 50%, both 1:1 matching with replacement and ATT
weighting perform worse in terms of reducing covariate imbalance, bias in ATT esti-
mates, and the MSE of ATT estimates as compared to 3:1 and 5:1 matching with
replacement. While no single method resulted in the smallest MSE across conditions,
the results were more consistent for covariate imbalance and bias. Regarding reductions
in baseline imbalance across covariates, ATT weighting produced the largest reductions
of all propensity score methods, regardless of the degree of baseline imbalance or treat-
ment prevalence. As k:1 matching increased from 1:1 to 5:1, the covariates achieved
greater balance, only equaling the imbalance resulting from weighting when treatment
prevalence was 80%. Thus, weighting was the superior method for reducing covari-
ate imbalance.

On the other hand, weighting also produced the largest bias in ATT estimates,
regardless of the degree of imbalance or treatment prevalence. As previously described,
this finding may appear counterintuitive but is consistent with prior simulation work
that demonstrated a distinction between reducing imbalance among covariates and
reducing imbalance on the propensity score itself (B. K. Lee et al., 2010; Stuart et al.,
2013). For covariates with nonnormal distributions or scenarios in which some covari-
ates are not related to treatment assignment, the differences between establishing

Figure 5. 2013–2014 school year covariate imbalance before and after matching or weighting.
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balance on covariates versus the propensity score may grow larger. This is in line with
the data generation process used in the current simulations, in which only 20% of the
covariates were related to the outcome. As a result, although weighting resulted in the
largest reductions in covariate imbalance, weighting also produced the largest bias in
treatment effect estimates. Regarding bias, 1:1 matching with replacement was the super-
ior method for producing unbiased treatment effect estimates.

Propensity score matching and weighting methods share the same goal; to reduce
bias in treatment effect estimates due to confounders in observational research.
Therefore, assessing covariate balance can ultimately be viewed as a means to an end, in
which methods that reduce imbalance generally lead to unbiased effect estimates. Our
simulation results demonstrated that while weighting achieved the greatest covariate bal-
ance, 1:1 matching ultimately produced the most unbiased effect estimates. This result
speaks to the traditional bias-variance tradeoff, in which increasing k tends to decrease
the standard error of treatment effect estimates but also increase bias in treatment effect
point estimates (Austin, 2010). One must decide then which property to emphasize: pre-
cise but biased estimates or unbiased but imprecise estimates. Our results demonstrate
that this tradeoff may be optimized by increasing to 3:1 or 5:1 matching with replace-
ment. We therefore recommend slightly increasing the number of nearest neighbors
used (i.e., more than one) for researchers examining the effectiveness of widely dissemi-
nated interventions being brought to scale in observational studies. While matching
with replacement involves extra steps by the analyst as compared to weighting methods,
these come with the benefit of producing less biased effect estimates. Moreover, the use
of matching with replacement is particularly important for such research designs, as the
majority of units may be exposed to treatment, requiring the reuse of control units in
the matching process. While matching with replacement still results in the use of match-
ing weights incorporated into outcome analyses, the benefits of not relying upon weights
that are directly related to propensity scores can be seen through reductions in bias.

Our results demonstrated that performance deteriorated (i.e., less reduction in covari-
ate imbalance, larger bias in ATT estimates, larger MSE of ATT estimates) as treatment
prevalence increased, regardless of sample size, the number of covariates, baseline imbal-
ance, or the propensity score method of choice. This increase in treatment prevalence
across time is a defining feature of widely disseminated interventions, as demonstrated
through our empirical example in which PBIS implementation rates increased from 38%
to 66% over time. The PBIS example depicted here is one clear example of widespread
dissemination both within this state and nationally. This is not unique to PBIS; cur-
rently, social emotional learning curricula and restorative justice/practices in schools are
also seeing widespread national dissemination. Even programs that are not widely disse-
minated nationally may be of interest, given widespread local dissemination (e.g., within
large districts or within states). Programs that are scaled-up may have efficacy research
supporting their use or that efficacy research may come after or in tandem with dissem-
ination. In either case, interventions that are widely disseminated would benefit from
real-world effectiveness studies. In conducting such studies, researchers must be cogni-
zant that the same matching and weighting methods that achieved well balanced groups
to allow for unbiased effect estimates at lower treatment prevalence rates may not work
as well for larger treatment prevalence.
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In fact, the simulation results demonstrated that both low and high treatment preva-
lence often negatively impact findings. This is demonstrated in Figure 3 with non-lin-
earity in the graphs. Additional sensitivity analyses not shown here demonstrated that
optimal performance often occurred when treatment prevalence was evenly distributed
at 50%. This again yields interesting implications for observational effectiveness
researchers. Practically speaking, the ability to estimate unbiased treatment effects with
low treatment prevalence would be most beneficial for promising interventions, and
fewer resources would be required in implementation. In juxtaposition, it may become
irrelevant and even impossible to estimate treatment effects as treatment prevalence
approaches 100% as there is no comparison control group. Thus, scenarios with a bal-
anced ratio of treated and untreated units may provide the most accurate estimates.
Taken together, these findings have import implications for researchers examining the
effects of programs or interventions being brought to scale in observational settings, an
area of limited research but great relevance. In particular, we urge researchers to be cog-
nizant of such sampling design issues from the onset, recognizing that investigations of
treatment effects in the very early stages (e.g., 20% treatment prevalence) or the very
late stages (e.g., 80% treatment prevalence) of implementation roll out may complicate
one’s ability to produce unbiased effect estimates.

Study Limitations

There are important limitations to our simulation study that should be considered.
First, propensity scores were estimated using a linear combination of covariates in a
parametric logistic regression, a much more simplistic model than the known data gen-
erative process. As the functional form of the true propensity score model is rarely
known in practice, machine learning methods such as classification and regression trees
or random forest models may provide flexibility in propensity score estimation (e.g., B.
K. Lee et al., 2010; McCaffrey et al., 2004; Suk & Kang, 2021). Similarly, nonparametric
weighting methods such as marginal mean weighting through stratification (Hong, 2010,
2012), a combination of nonparametric estimators with entropy balancing (Vegetabile
et al., 2021), and covariate balancing generalized propensity score methods (Fong et al.,
2018) may provide alternatives when the functional form of the exposure model is
unknown. Additionally, we considered unadjusted treatment effect estimates, in which a
binary treatment indicator was the sole predictor in the outcome model. Doubly robust
estimators may provide advantages so long as either the propensity score model or the
outcome model are correctly specified (Nguyen et al., 2017). Thus, including covariates
in a more complex outcome model may improve the accuracy and precision of treat-
ment effect estimates. A final, critical limitation concerns the longitudinal nature of
scale-up study designs. While this article conducted propensity score analyses cross-sec-
tionally, a more complex approach may consider time-varying treatment. Marginal
structural models may be used to appropriately handle time-dependent confounding,
estimating the probability of treatment at each timepoint, independent of prior covariate
and treatment histories.
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Conclusions

Despite these limitations, our study provides useful information for observational
researchers examining the effects of interventions being brought to scale. This article illus-
trates how covariate balance and treatment effect estimates are impacted by treatment
prevalence. Notably, a larger prevalence of treated units is associated with greater imbal-
ance and larger bias in effect estimates. Findings from our series of studies suggest that k:1
matching with replacement results in less biased ATT estimates than propensity score
weighting across a range of treatment prevalence rates, and that increasing k to larger than
one may optimize such bias-variance tradeoffs. We recommend researchers consider the
findings of this article when planning and designing quasi-experimental study designs,
particularly when examining interventions that have been widely scaled-up.
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