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Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data
Analysis: A Tutorial

Joseph M. Kusha , Katherine E. Masynb , Masoumeh Amin-Esmaeilia , Ryoko Susukidaa ,
Holly C. Wilcoxa and Rashelle J. Muscia

aJohns Hopkins Bloomberg School of Public Health; bGeorgia State University School of Public Health

ABSTRACT
Integrative data analysis (IDA) is an analytic tool that allows researchers to combine raw data across
multiple, independent studies, providing an improved measurement of latent constructs as compared
to single study analysis or meta-analyses. This is often achieved through the implementation of mod-
erated non-linear factor analysis (MNLFA), an advanced modeling approach that allows for covariate
moderation of item and factor parameters. The current paper provides an overview of this modeling
technique, highlighting distinct advantages most apt for IDA. We further illustrate the complex model
building process involved in MNLFA by providing a tutorial using empirical data from five separate
prevention trials. The code and data used for analyses are also provided.
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The practice of combining information across multiple inde-
pendent studies, commonly referred to as integrative data
analysis (IDA), is becoming increasingly popular in the
social and medical sciences (see Graham et al., 2017; Gross
et al., 2018, Rose et al., 2018; Sibley & Coxe, 2020). IDA
may be simply defined as “fitting models to data that have
been pooled across multiple studies” (Curran & Hussong,
2009, p. 82). IDA provides distinct advantages over single
study analysis or even meta-analyses, including increased
power through larger combined sample sizes, the ability to
formulate and explore previously unachievable research
questions (e.g., combining multiple cross-sectional studies
measured at different timepoints to allow for longitudinal
data analysis), improved measurement of latent constructs
through robust psychometric instruments and obtaining
increased frequencies of low base-rate behaviors. More
recently, researchers have begun incorporating moderated
non-linear factor analysis (MNLFA) into IDA studies as a
novel modeling approach, allowing researchers to test
whether a measure is invariant across multiple covariates
simultaneously, such as race, sex, and study membership.

Although the current methodological development of
MNLFA has been quite extensive (Bauer, 2017; Bauer &
Hussong, 2009; Curran et al., 2014; Curran & Hussong,
2009), there is a growing need among applied researchers
for guidance on implementing these models in practice
within the larger IDA framework. There are several chal-
lenges and decisions researchers must consider when con-
ducting these analyses, including determining which
combinations of predictors should be included as modera-
tors of the factor mean and variance, as well as considering
differential item functioning among certain item intercepts

and loadings. The overall aim of this paper is to provide a
detailed tutorial on the process of MNLFA model building
and implementation for broader IDA studies.

1. Integrative Data Analysis

Incorporating data from multiple sources has the ability to
yield greater insight into scientific questions than any single
study by providing researchers with more heterogeneous
populations, larger sample sizes, and greater precision in
parameter estimates, for example. In reality, the practice of
combining and analyzing quantitative data is largely varied.
One of the most popular methods, meta-analysis (see Glass,
1976), allows for researchers to analyze results, such as sum-
mary statistics or point estimates and standard errors that
have been presented in different but comparable studies. As
described by Cooper and Patall (2009), this traditional
approach to meta-analysis involves using aggregated data, in
which a researcher: (1) systematically searches and collects
studies that have been conducted on the topic of interest,
(2) extracts effect sizes based on reported summary statis-
tics, and (3) combines these estimates using statistically
sound techniques to obtain a single average effect size and
confidence interval (Cooper, 2009). Notably, however,
Cooper and Patall (2009) differentiate between meta-analysis
based on aggregated data, as described above, vs. meta-ana-
lysis based on individual participant-level data. The latter,
often called data synthesis, is referred to in this paper as
integrative data analysis, which involves “the central collec-
tion, checking, and re-analysis of the raw data from each
study to obtain combined results” (Cooper & Patall, 2009,
p. 166). By accessing the raw data from each study, IDA
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allows researchers to replicate analyses performed in the ori-
ginal studies, to improve precision in effect estimates by
increasing the sample size and statistical power, as well as to
estimate both within-study and between-study effects,
among other benefits.

When pooling data across multiple studies for IDA, a
great deal of effort is required in preparing the data for stat-
istical analyses. The first basic step of any pre-statistical data
harmonization process involves collecting the datasets and
obtaining codebooks from the included studies. Next, it is
often useful to construct a concordance table, documenting
which variables are collected across studies. This table acts
as a central codebook, allowing researchers to confirm
response scale types, identify common data domains, and
examine variables over time if data were collected longitu-
dinally. Finally, variables are harmonized across studies, or
made more homogenous to allow for a more straightfor-
ward analytic plan. This step involves the identification of
relevant domains and instruments, developing uniform vari-
able names and labels, creating mergeable data, etc. For
example, consider two studies that measured aggressive
behavior in first-grade students. Both studies shared the
same item stem: “This student exhibits aggressive behaviors,
such as breaking rules, harming property, and teasing oth-
ers.” However, the two studies differed in the response
options: Study A measured this item on a five-point Likert
scale (0 ¼ “Never” to 4 ¼ “Almost always”), while Study B
measured this item as a binary variable (0 ¼ “False,” 1 ¼
“True”). In this example, a researcher conducting IDA may
consider collapsing a sparsely distributed ordinal variable in
Study A into a binary variable to ensure the two studies
have equivalent response categories. This is often referred to
as “logical harmonization” throughout the literature, in
which the original items are transformed to have logically
equivalent response scales (see Hussong et al., 2013). Only
after data have been appropriately harmonized may
researchers move on to establishing a theoretical construct
on a common scale across studies. MNLFA provides
researchers with an advanced modeling approach that can
accommodate such data in an effort to estimate
latent factors.

2. Factor Analysis and the 2-PL Model

The methodological development of MNLFA is rooted in
psychometric theory, with contributions from both the lin-
ear and generalized factor analysis framework (Bollen, 1989;
Muth�en, 1984; Rabe-Hesketh et al., 2004; Skrondal & Rabe-
Hesketh, 2004), as well as from the two-parameter logistic
(2-PL) model from item response theory (IRT; Birnbaum,
1968; Bock & Aitkin, 1981; Lord & Novich, 1968). As a
starting point, consider the following simple linear factor
model (J€oreskog, 1967):

yi ¼ mþ Kgi þ ei, (1)

in which i indexes individual observations, yi is a
p-dimensional vector of observed continuous variables, m is
a p-dimensional vector of measurement intercepts, K is a

p � m matrix of factor loadings, gi is an m � 1 vector of
latent variables, and ei is a p-dimensional vector of measure-
ment errors. It is assumed that E(ei) ¼ 0, Cov(gi, ei) ¼ 0,
with a model implied variance-covariance matrix given by

R ¼ KUK0 þH, (2)

where V(gi) ¼ U, and V(ei) ¼ H, a diagonal matrix. This
model is identified so long as a unique solution can be
obtained for each parameter. The scale of the latent factor
may be set in several ways, dependent upon the central
research question. For example, fixing the intercept and fac-
tor loading of the first item to 0 and 1, respectively, allows
the researcher to freely estimate the factor mean and vari-
ance. Conversely, the factor mean and variance may be fixed
to 0 and 1, respectively, placing the factor on a standard
normal distribution.

An important concept in factor analysis is measurement
invariance (also known as factorial invariance or measure-
ment equivalence). Measurement invariance represents the
degree to which observed item distributions are dependent
only upon an individual’s latent variable and no other char-
acteristics and may be used for investigating correspondence
in factor models across studies through traditional techni-
ques (Bauer et al., 2020; J€oreskog, 1971; Meredith, 1993;
S€orbom, 1974). This represents one of the most fundamen-
tal concerns of IDA, namely, ensuring that the hypothesized
factor being measured is in fact common across studies, as
well as across other covariates (e.g., sex, race, or time).
Levels of measurement invariance include dimensional
invariance (same number of factors across groups), metric
invariance (same factor loadings across groups to allow for
comparisons of factor variances/covariances), and strong
factorial invariance (same item intercepts to allow for
unbiased group differences in factor means), among others
(Little et al., 2006). The process of testing for measurement
invariance in factor analysis involves the following general
procedure. First, a baseline two-group model (with con-
straints for dimensional and configural invariance) is estab-
lished, in which a log-likelihood value is estimated using
maximum likelihood for example, and stored. Then, one
progressively specifies more stringent constraints, again stor-
ing the log-likelihood value. Finally, a likelihood ratio differ-
ence test is calculated for the current model in comparison
to the prior model (in which the current model is nested)
to determine the effect of a given level of measurement
invariance. If the likelihood ratio difference test is non-sig-
nificant (e.g., p > .05), measurement invariance is estab-
lished for a given constraint. By demonstrating invariance
across more stringent constraints, one can provide more evi-
dence that the same factor structure is being measured in
both groups.

We next consider the 2-PL model from the IRT litera-
ture. Although both factor analysis and the 2-PL model
assume continuous latent variables, these models differ in
item scale type; linear factor models require continuous
items, while 2-PL models require binary items. Consider the
following 2-PL model, in which we assume a single continu-
ous latent trait (i.e., factor) underlies a set of observed
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binary item responses. Assuming each item follows a condi-
tional Bernoulli distribution, the probability of observing a
correct response (i.e., score of 1) for a single item y can be
given as

P yi ¼ 1jhi
� � ¼ e a hi�dð Þ½ �

1þ e a hi�dð Þ½ � , (3)

in which i indexes individual observations, hi is the latent
trait score, a is the discrimination parameter, and d is the
difficulty parameter. It is assumed that the item response is
independent across observations and conditionally inde-
pendent across the item, conditional on the latent trait. To
set the scale of the latent factor, it is typical to assume hi �
N(0,1), allowing the discrimination and difficulty parameters
to be freely estimated. In the 2-PL model, the discrimination
parameter represents the rate at which the probability of a
correct response increases as the latent trait increases. In
general, a highly discriminating item can better distinguish
between different values of the latent trait (particularly
when hi is near d). The difficulty parameter may be defined
as P yi ¼ 1jhi ¼ d

� � ¼ :5, and represents the value of the
latent trait at which the probability of a correct response
equals .5. Although we focus our attention on the 2-PL
model for simplicity, there are numerous alternative IRT
models that may be of interest to the researcher. For
example, the three-parameter logistic (3-PL) model includes
an additional lower asymptote parameter v, often referred
to as the guessing parameter. Likewise, the rating scale
model or partial credit model may be appropriate for polyt-
omous items, such as Likert-scale responses.

As with factor analysis, it is important to establish meas-
urement invariance for the 2-PL model. Within the IRT
framework, measurement invariance can be investigated
through differential item functioning (DIF; Holland &
Wainer, 1993). After controlling for the latent trait, an item
without bias should perform the same for two individuals,
regardless of a group membership. When the probability of
a correct response for an item differs over groups with equal
values of the latent trait, the item is said to exhibit DIF.
Although there are a variety of methods that can be used to
assess DIF in the 2-PL model, DIF in the discrimination
and difficulty parameters is typically jointly tested using a
likelihood ratio test (Belzak, 2020; Thissen et al., 1993). As a
general strategy similar to the process described earlier for
factor analysis, the first step involves fitting a baseline 2-PL
model with all parameters varying between the reference
and focal groups. Next, a (nested) restricted model is esti-
mated, in which the parameters for a single item are
constrained to be equal between groups. Finally, the likeli-
hood ratio test statistic is computed, with a significant (e.g.,
p < .05) test statistic indicating DIF.

3. Factor Estimation Considerations in IDA

There are four major issues researchers face when using
traditional measurement models and invariance testing tech-
niques, all of which can be appropriately dealt with
using MNLFA: (1) some items not being shared across

studies, (2) continuous covariates, (3) sequential testing of
covariates, and (4) items with different scale types. First,
researchers conducting IDA often encounter some items not
being shared across studies (i.e., an item exists in one study
but does not in another), which may be considered as miss-
ing data and handled through maximum likelihood estima-
tion (Graham, 2003; Schafer & Graham, 2002). A similar
difficulty includes scenarios in which there are no items that
are common to all studies being used in IDA. However, this
may be addressed by linking or chaining the studies
together. For example, perhaps Study A includes items
x1–x5, Study B includes items x5–x10, and Study C includes
items x10–x15. While there are no items common to all
studies, item x5 is common to Study A and Study B, while
item x10 is common to Study B and Study C. Thus, by
including parameter invariance constraints on these parame-
ters, estimated factor scores across the three studies based
on a common metric may be obtained.

Regarding the second (continuous covariates) and third
(sequential testing of covariates) issues highlighted above,
there are two apparent limitations to traditional approaches
to measurement invariance and DIF testing. Typically, when
using multi-sample approaches, (a) discrete groups are (b)
tested in succession. First, while discrete group testing may
be a natural way to compare group membership (e.g., treat-
ment vs. control, old vs. young, or females vs. males), it may
be desirable to consider invariance testing across continuous
covariates, such as age or IQ. Additionally, even if research-
ers are interested in establishing invariance across multiple
different group comparisons, this process is typically con-
ducted sequentially (e.g., invariance between treatment vs.
control is tested, then invariance between old vs. young is
tested, etc.). With a large number of groups, the number of
tests to conduct may become unwieldy, while the cell sizes
of the various strata may become small.

A final consideration of factor estimation in IDA deals
with item scale type. For the two models presented, only
continuous items are appropriate for linear factor analysis,
while only binary items are appropriate for the 2-PL model.
The limitations of these requirements become apparent for
IDA of studies with potentially different instruments, differ-
ent items, and different item scale types. Consider a model
in which the latent factor is measured by a combination of
item scale types (e.g., both continuous and binary items).
Neither single model presented thus far is capable of han-
dling such data, as is often encountered when pooling data-
sets. In direct response to the concerns raised here, MNLFA
has been developed from the generalized factor analysis and
non-linear item-level factor analysis literature, and repre-
sents a more flexible approach ideal for use in IDA.

4. Moderated Non-linear Factor Analysis

Originally proposed by Bauer and Hussong (2009), MNLFA
builds upon generalized factor analysis (Muth�en, 1984;
Rabe-Hesketh et al., 2004; Skrondal & Rabe-Hesketh, 2004),
with models that can accommodate items of different scale
types (e.g., binary, ordinal, or continuous), as well as items
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of mixed scale types (e.g., both binary and continuous).
Consider the following generalized factor model:

gi lijð Þ ¼ ti þ kigj, (4)

in which lij is the expected value of item i for observation j,
gi(�) specifies the desired link function, ti is the measure-
ment intercept, ki is the factor loading, and gj is the latent
factor, assumed to be normally distributed as gj � N a,wð Þ:
While the generalized factor model does not include a spe-
cific error term, measurement error is implicitly taken into
account by modeling the conditional-response distribution
for a given item. For example, for a set of continuous indi-
cators, a normal conditional response distribution, yijjgj �
N lij,ri

2
� �

, with the identity link function, gi lijð Þ ¼ lij,
gives

lij ¼ ti þ kigj: (5)

Notice Equation (5) represents a reparameterization of
the linear factor model presented in Equation (1). Likewise,
consider a set of binary indicators, in which a conditional
Bernoulli response distribution, yijjgj � Ber lijð Þ, with the
logit link function, gi lijð Þ ¼ ln lij= 1� lij

� �h i
, gives

ln
lij

1� lij

� �
¼ ti þ kigj: (6)

We note that generalized factor models may also be
expressed in terms of the inverse link function, gi�1(�):

lij ¼ gi
�1 ti þ kigj
� �

: (7)

Now, substituting the inverse logit link function (i.e.,
logistic function) into Equation (6), the expected value can
be more naturally expressed as

lij ¼
1

1þ e � ti þ kigjð Þ½ � (8a)

¼ e ti þ kigjð Þ
1þ e ti þ kigjð Þ (8b)

¼ e
ki gj� �ti=kið Þ½ �� 	

1þ e
ki gj� �ti=kið Þ½ �� 	 : (8c)

Comparing Equations (8a)–(8c) with Equation (3), it can
be seen that this model represents a reparameterization of
the 2-PL model, in which ti ¼ �ad, ki ¼ a, and gj ¼ hi:

One of the greatest benefits of the generalized factor ana-
lysis framework is the ability to model different response
distributions and link functions for different items simultan-
eously. The flexibility of this model requires the assumption
of conditional independence for the items, in which individ-
ual univariate distributions are modeled for each item,
rather than assuming a multivariate distribution for the set
of items. For example, one could choose a normal distribu-
tion with an identity link function for a continuous item, a
Bernoulli distribution with a logit link function for a binary
item, a Poisson distribution with a log link function for a
count item, and a multinomial distribution with a logit link
function for a nominal (e.g., unordered polytomous) item,
with all parameters, estimated simultaneously.

4.1. MNLFA

One limitation of the generalized factor model is the
assumption of parameter invariance across individuals.
Examining Equation (4), the four parameters that define the
model (a ¼ latent factor mean, w ¼ latent factor variance,
ti ¼ intercept for item i, and ki ¼ factor loading for item i)
are assumed equal between groups (e.g., treatment and con-
trol units, males and females, or between individuals from
different studies). MNLFA extends the generalized factor
analysis framework by allowing the four model parameters
to vary as a function of covariates.

We first focus on allowing observed covariate moderation
of the latent factor mean and variance. Here, the latent fac-
tor is assumed to be normally distributed as gj �
N aj,wj
� �

, with parameters defined as (Bauer et al., 2020;
Bauer & Hussong, 2009; Curran et al, 2014):

Figure 1. Example MNLFA path diagram.
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aj ¼ a0 þ
XW

w¼1
awxwj, (9)

wj ¼ w0 þ e
PW

w¼1
bwxwj

� �
, (10)

in which xw denotes observed moderator x, with W total
moderators, a0 and w0 are the factor mean and variance,
respectively, when all moderators are equal to 0, and aw and
bw represent the effect of the moderator on the factor mean
and variance, respectively. To ensure a non-negative vari-
ance estimate, Equation (10) is modeled as a log-linear func-
tion of the moderators. Again, the scale of the latent factor
is typically set by constraining the factor mean and variance
to 0 and 1, respectively.

Next, we consider the observed covariate moderation of
items. With the addition of j subscripts to the item intercept
(tij) and factor loading (kij), the generalized factor model
from Equation (4) is extended to

gi lijð Þ ¼ tij þ kijgj, (11)

allowing the intercept and loading for observation j to
uniquely differ as a (linear) function of the moderators,
expressed as:

tij ¼ t0i þ
XW

w¼1
twixwj, (12)

kij ¼ k0i þ
XW

w¼1
kwixwj: (13)

Now, t0i and kij are the item intercept and factor loading
for individual j when all moderators are equal to 0, respect-
ively, and twi and kwi represent the effect of the moderator
on the item intercept and factor loading, respectively. See
Figure 1 for an example MNLFA path diagram.

There are two specific considerations of the MNLFA
model worth noting. First, it is possible to allow for

different moderators in Equations (9)–(13). For example,
one could model sex as a moderator of the factor mean but
not the factor variance. Likewise, one could model study
membership as a moderator of the intercept of the first
item, but not of the factor loading of the first item.
Moreover, different items may also have different modera-
tors (e.g., race moderates the intercept and loading of item
1, but only the loading of item 2). Second, it is not required
that the conditional-response distribution for an item
belonging to the exponential family, although this is
assumed for the generalized linear factor model. For
example, for a non-normally distributed continuous item
with heavy tails, the Student’s t distribution may be used.

Overall, the MNLFA model improves upon traditional
measurement invariance testing by allowing multiple covari-
ates to moderate different item and factor parameters simul-
taneously. Additionally, covariates may include both
categorical and continuous variables, a limitation of more
traditional measurement invariance testing techniques. It is
also possible to reduce certain MNLFA model specifications
to more familiar models, such as linear factor models or
IRT models. However, by allowing for specifications of dif-
ferent response distributions and link functions for different
items, MNLFA offers an extremely flexible alternative mod-
eling approach to more traditional factor models.
Importantly, the ability to estimate factors based on poten-
tially different items pooled across studies, as well as allow
for the moderation of multiple covariates simultaneously on
the factor and item parameters makes MNLFA extremely
suitable for use within IDA.

5. Applied Example: Aggressive-Disruptive Behavior
among Elementary Students

We now present an applied example using empirical data
from five independent prevention trials to estimate the
effect of a latent aggressive-disruptive behavior factor on

Table 1. Sample demographic characteristics.

Sample sizes across study

Race Sex

Black White Female Male Total

Study 1 432 385 254 563 817
Study 2 7 444 234 217 451
Study 3 1,322 562 1,016 868 1,884
Study 4 556 83 302 337 639
Study 5 144 13 86 71 157

Item endorsement rates across study

Study

Study 1 Study 2 Study 3 Study 4 Study 5 Total

Breaks rules .895 .525 .616 .521 .703 .661
Harms property – .175 .362 .202 .351 .307
Breaks things .540 .175 .316 .152 .359 .331
Takes property .668 .220 .417 .227 .487 .431
Fights .816 .375 .360 .291 .487 .458
Lies .738 .255 .438 .236 .583 .466
Yells at others .816 .370 .490 .335 .506 .530
Stubborn .876 .745 .620 .336 .551 .631
Teases others .821 .575 .542 .382 .532 .578

Note. Item “harms property” was not measured in Study 1.
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high school graduation. Previous research has demonstrated
the Authority Acceptance subscale of the Teacher
Observation of Classroom Adaptation-Revised (TOCA-R;
Werthamer-Larsson et al., 1991), an instrument commonly
used in schools to assess student behavior, to be related to
several negative outcomes including later delinquent behav-
ior and criminal justice involvement (Petras et al., 2004;
2005), as well as high school drop and unemployment
(Bradshaw et al., 2010). Bradshaw & Kush (2020) found the
TOCA-R to be a highly valid and reliable measure of
aggressive and disruptive behavior among students as early
as kindergarten. For the current applied example, we
hypothesized baseline measures of aggressive-disruptive
behaviors would be associated with later high
school dropout.

To conduct integrative data analyses, data were drawn
from the following five independent school-based cluster-
randomized prevention trials: (1) JHU Center for
Prevention and Early Intervention first-generation trial
(Kellam et al., 1998), (2) JHU Center for Prevention and
Early Intervention second-generation trial (Ialongo et al.,
1999), (3) Schools and Families Educating Children Study
(Tolan et al., 2004), (4) Fast Track Project (Conduct
Problems Prevention Research Group, 2019), and (5)

Linking the Interests of Families and Teachers Study (Eddy
et al., 2003). All studies administered similar versions of the
TOCA-R. For this example, we focus on teacher ratings of
first-grade students exclusively. In addition to increased stat-
istical power through a larger combined sample size, con-
ducting IDA on the combined data was useful for increasing
two aspects of heterogeneity. First, racial subgroup sample
sizes varied dramatically across studies; for example, Black
students comprised �13% of the sample in Study 5, but
about 70% of the sample in Study 3 (see Table 1). Second,
item endorsement rates also differed substantially across
studies. For example, the item “Takes property” was
endorsed by �22% of students in Study 2, yet about 67% of
students in Study 1. By combining data from multiple stud-
ies, we were able to collect more robust and nuanced find-
ings than any single study could have provided. Thus, the
overall goal was to establish a theoretical aggressive-disrup-
tive behavior construct that has been placed on a common
scale across studies. Statistical programming was conducted
in R version 4.1.1 (R Core Team, 2020), relying on the
MplusAutomation package (Hallquist & Wiley, 2018) to
facilitate conducting analyses in Mplus version 8.4 (Muth�en
& Muth�en, 2017). All syntax and data used for analyses are
freely available at: https://github.com/jmk7cj/SEM-mnlfa.

! note: comments are designated by exclamation points
title: CFA model for Study 4 ! title of analysis 

data: 
file = data_cfa.dat; ! name of datafile 

variable:
names = id study_id study_1-study_5 sex race x1-x9 hs; ! names of columns in datafile 
usevariables = x1-x9; ! only need to use variables x1-x9
categorical = x1-x9; ! variables x1-x9 are categorical outcome variables
useobservations = study_id == 4; ! constrain to individuals from study 4
missing = all (-999); ! missing data identifier

analysis:
estimator = wlsmv; ! weighted least squares with mean and variance adjusted fit statistics
processors = 1; ! number of cores / processors for parallel processing 

model:
Factor BY x1-x9; ! latent variable ‘Factor’ is measured by items 1 through 9

output:
standardized; ! can view standardized output (in addition to IRT parameterization) 
stdyx;

 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                    639 
 
Number of dependent variables                            9 
Number of independent variables                         0 
Number of continuous latent variables                 1 
 
Observed dependent variables 
 
  Binary and ordered categorical (ordinal) 
   X1          X2          X3          X4          X5          X6 
   X7          X8          X9 
 
Continuous latent variables 
   FACTOR 
 
Estimator                                                                    WLSMV 
Maximum number of iterations                                  1000 
Convergence criterion                                                 0.500D-04 
Maximum number of steepest descent iterations        20 
Maximum number of iterations for H1                       2000 
Convergence criterion for H1                                     0.100D-03 
Parameterization                                              DELTA 
Link                                                         PROBIT 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       18 
 
Chi-Square Test of Model Fit 
 
          Value                                     92.346* 
          Degrees of Freedom                    27 
          P-Value                                 0.0000 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                                0.062 
          90 Percent C.I.                          0.048  0.076 

(a) (b)

Figure 2. (a) Mplus input file of CFA model for Study 4. (b) Select Mplus output file of CFA model for Study 4.
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6. Sample, Item Selection, and Pre-Statistical
Harmonization

Data from N¼ 3,948 students (n¼ 1,892, 48% female,
n¼ 2,461, 62% Black), with an average sample size per the
study of 790 students (min ¼ 157, max ¼ 1,884, SD¼ 659)
were analyzed. Based on prior research (Petras et al., 2004),
we considered a total of 9 items measured along a 6-point
Likert scale (1 ¼ “almost never,” 6 ¼ “almost always”) as
comprising the aggressive-disruptive behavior subscale,
including items, such as “takes others’ property” and “teases
classmates.” In an effort to reduce sparseness in extreme
responses, all items were collapsed into binary variables (see
DiStefano et al., 2021). Endorsement rates of items across
all studies ranged from 0.32 (“harms property”) to 0.66

(“breaks rules”). See Table 1 for additional demographic
characteristics.

7. Confirmatory Factor Analysis

As an initial step, confirmatory factor analyses (CFA) based
on the nine binary items were conducted independently for
each study. Parameters were estimated using a probit link
function with weighted least squares with mean and vari-
ance adjusted chi-square fit statistics (Muth�en, 1984). As an
example, Figure 2a provides an annotated Mplus input file
of the CFA model for Study 4. Here, the useobservations¼ -
study_id ¼¼ 4; option of the variable: command is used to
restrict the analyses to those from Study 4, while the

Probability RMSEA <= .05           0.078

CFI/TLI

CFI                                0.994
TLI                   0.992

Chi-Square Test of Model Fit for the Baseline Model

Value                          11431.494
Degrees of Freedom                    36
P-Value                          0.0000

SRMR (Standardized Root Mean Square Residual)

Value                              0.040

Optimum Function Value for Weighted Least-Squares Estimator

Value                     0.42026358D-01

MODEL RESULTS

Two-Tailed
Estimate       S.E.  Est./S.E.    P-Value

FACTOR   BY
X1                 1.000      0.000    999.000    999.000
X2                 1.153      0.037     31.230      0.000
X3                 1.151      0.040 28.971      0.000
X4                 1.114      0.037     30.462      0.000
X5                 1.108      0.037     29.864      0.000
X6                 1.075      0.038     28.056      0.000
X7                 1.017      0.039     26.281      0.000
X8                 0.901      0.042     21.240      0.000
X9                 1.012      0.042     24.025      0.000

Thresholds
X1$1              -0.053      0.050     -1.068      0.285
X2$1               0.835      0.056     14.803      0.000
X3$1               1.029      0.060     17.032      0.000
X4$1               0.749      0.055     13.623      0.000
X5$1               0.550      0.052     10.499      0.000
X6$1 0.718      0.055     13.174      0.000
X7$1               0.426      0.051      8.320      0.000

X8$1               0.422      0.051      8.242      0.000
X9$1               0.301      0.050      5.965      0.000

Variances
FACTOR         0.688      0.041     16.717      0.000

IRT PARAMETERIZATION

Two-Tailed
Estimate       S.E.  Est./S.E.    P-Value

Item Discriminations

FACTOR   BY
X1                 1.486      0.143     10.425      0.000
X2                 3.283      0.598      5.488      0.000
X3                 3.199      0.647      4.944      0.000
X4                 2.414      0.293      8.231      0.000
X5  2.334      0.270      8.657      0.000
X6                 1.969      0.219      8.991      0.000
X7                 1.574      0.159      9.906      0.000
X8                 1.125      0.111     10.166      0.000
X9                 1.544      0.159      9.704      0.000

Item Difficulties
X1$1              -0.064      0.060     -1.065      0.287
X2$1               0.873      0.061     14.400      0.000
X3$1               1.078      0.067     16.056 0.000
X4$1               0.811      0.062     13.081      0.000
X5$1               0.599      0.058     10.272      0.000
X6$1               0.806      0.065     12.389      0.000
X7$1               0.505      0.063      8.029      0.000
X8$1               0.565      0.074      7.665      0.000
X9$1               0.358      0.061      5.843      0.000

Variances
FACTOR             1.000      0.000      0.000      1.000

STANDARDIZED MODEL RESULTS

STDYX Standardization

Two-Tailed
Estimate       S.E.  Est./S.E.    P-Value

Figure 2. (Continued).
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measurement model is defined with the line Factor BY x1-
x9; in the model: command. Figure 2b provides the selected
Mplus output of the same model. Note that in addition to
probit parameterization, results are parameterized as IRT
(i.e., item difficulty and discrimination) and standardized.
Results of the Study 4 CFA model demonstrate that the
model fit the data relatively well, with factor loadings rang-
ing from .75 to .96 (RMSEA ¼ .062, CFI ¼ .994, TLI ¼
.992, SRMR ¼ .040). A final CFA was fit to all (pooled)
observations simultaneously (by removing the useobserva-
tions option), with factor loadings ranging from .82 to .91
(RMSEA ¼ .049, CFI ¼ .996, TLI ¼ .995, SRMR ¼ .027).
Overall, the CFA results demonstrate that a single factor
model is an adequate model when fit to each student inde-
pendently, as well as when fit to the pooled data. Having
established our model, we move on to building a model
for MNLFA.

8. MNLFA Model Building

After establishing a measurement model, it is important to
follow a methodical approach to model building for

MNLFA. Guided by theory and prior findings, we focus on
three moderators of aggressive-disruptive behaviors: sex,
race, and study membership. Here, sex was a binary variable
coded (0¼ female, 1¼male), while the race was a binary
variable coded (0¼Black, 1¼White). Multiple dummy
coded indicator variables were created for Study 2 through
Study 5 such that estimates were in reference to Study 1.
This resulted in a total of six moderators. In what follows,
we present an item-by-item testing approach for developing
a final MNLFA model, as recommended by Curran et al.
(2014) and Gottfredson et al. (2019) (see also Finch, 2005;
Thissen, 2001). However, we note the possibility of different
approaches and procedures that may be used to establish
invariance resulting in equivalent measurement models (e.g.,
Vandenberg & Lance, 2000).

8.1. Baseline MNLFA Model

As a first step, we estimate the covariates’ effects on the
latent mean and latent variance, recording the log-likelihood
value, as well as the estimated coefficients and associated p-
values for each covariate effect. This represents a baseline
model, to which future models are compared. Figure 3a pro-
vides an annotated Mplus input file of the baseline MNLFA
model. The statement Factor ON study_2 – study_5 sex race;
in the model: command is used to allow the covariates to
moderate the factor mean. This command corresponds to
Equation (9). Allowing the covariates to moderate the factor
variance requires additional steps. To avoid negative vari-
ance estimates, a log-linear constraint will be used with the
covariates. This is first implemented using the con-
straint¼ study_2 – study_5 sex race; option in the variable:
command. Then, in the model: command, a label is referred
to in parentheses following the variance estimate of the fac-
tor: Factor (factor_variance). Next, in the model constraint:
command, new labels are given referencing the parameters
of the moderators: new (f_study_2 f_study_3 f_study_4
f_study_5 f_sex f_race). Finally, the factor variance moder-
ation is implemented using the following command:
factor_variance¼ EXP(f_study_2�study_2þ f_study_3�study_
3þ f_study_4�study_4þ f_study_5�study_5þ f_sex�sexþ f_
race�race). This command corresponds to Equation (10).
Similarly, Figure 3b provides select Mplus output of the
baseline MNLFA model. Examining the model results,
the covariate moderation of the factor mean is given in the
FACTOR ON subsection, while the covariate moderation of
the factor variance is given in the New/Additional
Parameters subsection. Here it can be seen that all six cova-
riates were significant moderators of the factor mean, while
all covariates except for study_2 were significant moderators
of the factor variance.

8.2. Item Specific MNLFA Models

Next, leaving each of the covariate effects on the latent
mean and variance (regardless of significance), we explore
item moderation by allowing the covariates to additionally
moderate the item intercept and factor loading of the first

 
 FACTOR   BY 
    X1                 0.830      0.025     33.434      0.000 
    X2                 0.957      0.015     64.619      0.000 
    X3                 0.954      0.017     55.551      0.000 
    X4                 0.924      0.016     56.190      0.000 
    X5                 0.919      0.016     55.836      0.000 
    X6                 0.892      0.020     43.848      0.000 
    X7                 0.844      0.025     34.448      0.000 
    X8                 0.747      0.032     23.036      0.000 
    X9                 0.839      0.026     32.827      0.000 
 
 Thresholds 
    X1$1              -0.053      0.050     -1.068      0.285 
    X2$1               0.835      0.056     14.803      0.000 
    X3$1               1.029      0.060     17.032      0.000 
    X4$1               0.749      0.055     13.623      0.000 
    X5$1               0.550      0.052     10.499      0.000 
    X6$1               0.718      0.055     13.174      0.000 
    X7$1               0.426      0.051      8.320      0.000 
    X8$1               0.422      0.051      8.242      0.000 
    X9$1               0.301      0.050      5.965      0.000 
 
 Variances 
    FACTOR             1.000      0.000    999.000    999.000 
 
 
R-SQUARE 
 
    Observed                                        Two-Tailed   Residual 
    Variable        Estimate       S.E.  Est./S.E.    P-Value    Variance 
 
    X1                 0.688      0.041     16.717      0.000      0.312 
    X2                 0.915      0.028     32.310      0.000      0.085 
    X3                 0.911      0.033     27.776      0.000      0.089 
    X4                 0.854      0.030     28.095      0.000      0.146 
    X5                 0.845      0.030     27.918      0.000      0.155 
    X6                 0.795      0.036     21.924      0.000      0.205 
    X7                 0.712      0.041     17.224      0.000      0.288 
    X8                 0.559      0.049     11.518      0.000      0.441 
    X9                 0.704      0.043     16.413      0.000      0.296 

Figure 2. (Continued).
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item only (i.e., “breaks rules”). Again, model estimates and
p-values are recorded. Figure 4a provides an annotated
Mplus input file of the first item MNLFA model. In add-
ition to the moderation of factor parameters, moderation of
the item intercept is implemented using the statement x1
ON study_2 – study_5 sex race; in the model: command.
This command corresponds to Equation (12). Allowing the
covariates to moderate the item loading requires model con-
straints. First, a label is referred to in parentheses following
the loading estimate of the first item: Factor BY x1
(x1_loading); in the model: command. Next, in the model
constraint: command, new labels are given referencing the
parameters of the item moderators: new (x1_int x1_study_2
x1_study_3 x1_study_4 x1_study_5 x1_sex x1_race). Finally,
moderation of the first item loading is implemented using
the following command: x1_loading¼ x1_intþ x1_study_
2�study_2þ x1_study_3�study_3þ x1_study_4�study_4þ x1
_study_5�study_5þ x1_sex�sexþ x1_race�race. This com-
mand corresponds to Equation (13). Similarly, Figure 4b

provides select Mplus output of the first item
MNLFA model. Examining the model results, the
covariate moderation of the item intercept is given in the
X1 ON subsection, while the covariate moderation of
the item loading is given in the New/Additional
Parameters subsection. Here it can be seen that no covari-
ates were significant moderators of the item intercept,
while study_4 and sex were significant moderators of the
item loading.

Now, a likelihood ratio test (LRT) is conducted, compar-
ing the change in model fit between the current model
(breaks rules item and factor moderation), and the baseline
model (factor moderation only). For example, the baseline
model has 29 parameters, a log-likelihood of �13,603.1, and
a scaling factor of 1.050; the breaks rules model has 42
parameters, a log-likelihood of �13,467.8, and a scaling fac-
tor of 1.022. Thus, the chi-square difference test based on
log-likelihood values with a scaling factor obtained from
maximum likelihood estimates with robust standard errors

(a) (b)

Figure 3. (a) Mplus input file of baseline MNLFA model. (b) Select Mplus output file of baseline MNLFA model.
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can be computed as:

LRT ¼ �2� �13, 603:1��13, 467:8ð Þ
29� 1:050ð Þ � 42� 1:022ð Þ
 �

� 29� 42ð Þ ¼ 282:01

(14)

As a chi-square distribution of 282.01 with 42� 29¼ 13
degrees of freedom results in a p-value <.05, we conclude
the breaks rules model fits the data significantly better than

the baseline model and thus will include any item-specific
covariate effects with significant p-values in future models.
Next, the covariate effects for the first item are removed but
are now added for the second item only (i.e., “harms proper-
ty”). Again, with model estimates and p-values recorded, an
LRT is conducted comparing the current model (harms
property item and factor moderation) to the baseline model
(factor moderation only). This process is continued for each
item model individually. All models used maximum

title: Item 1 MNLFA model 
 
data:  
file = data_mnlfa.dat;  
 
variable: 
names = id study_id study_1-study_5 sex race x1-x9 hs;  
usevariables =study_2 - study_5 sex race x1-x9;  
categorical = x1-x9;  
missing = all (-999);  
constraint = study_2 – study_5 sex race;  
 
analysis: 
estimator = mlr; 
link = logit;  
processors = 1;  
 
model: 
Factor BY x1-x9;  
 
! allow covariates to moderate factor mean (linear function)  
Factor ON study_2 - study_5 sex race;  
[Factor@0];  
 
Factor (factor_variance);  
 
! allow covariates to moderate item 1 intercept 
x1 ON study_2 - study_5 sex race;   
Factor BY x1 (x1_loading); ! label used for moderation of item 1 factor loading 
 
model constraint:  
new (f_study_2 f_study_3 f_study_4 f_study_5 f_sex f_race);  
new (x1_int x1_study_2 x1_study_3 x1_study_4 x1_study_5 x1_sex x1_race);  
 
! allow covariates to moderate factor variance  
! use log-linear function to avoid negative variance 
factor_variance = EXP(f_study_2*study_2 + f_study_3*study_3 +  
f_study_4*study_4 + f_study_5*study_5 + f_sex*sex + f_race*race); 
 
! allow covariates to moderate factor loading of item 1 
x1_loading = x1_int + x1_study_2*study_2 + x1_study_3*study_3 + 
x1_study_4*study_4 + x1_study_5*study_5 + x1_sex*sex + x1_race*race; 
 
  

MODEL RESULTS
Two-Tailed

Estimate       S.E.  Est./S.E.    P-Value

FACTOR   BY
X1               999.000      0.000    999.000    999.000
X2                 1.917      0.131     14.630      0.000
X3                 3.282      0.265     12.372      0.000
X4                 3.000      0.218     13.755      0.000
X5  2.596      0.174     14.940      0.000
X6                 2.772      0.187     14.860      0.000
X7                 2.426      0.165     14.711      0.000
X8                 1.997      0.135     14.793      0.000
X9          2.388      0.165     14.497      0.000

FACTOR     ON
STUDY_2           -0.654      0.092     -7.130      0.000
STUDY_3           -0.848      0.065    -13.092      0.000
STUDY_4           -1.701      0.113    -15.019      0.000
STUDY_5           -0.872      0.138     -6.314      0.000
SEX                0.403      0.047      8.556      0.000
RACE             -0.576      0.058     -9.931      0.000

X1         ON
STUDY_2           -0.899      1.030     -0.873      0.383
STUDY_3           -0.703      0.507     -1.387      0.166
STUDY_4           -0.794      0.579     -1.370      0.171
STUDY_5           -0.714      0.908     -0.787      0.431
SEX               -0.282      0.312     -0.905      0.365
RACE               0.668      0.428      1.559      0.119

Intercepts
FACTOR             0.000      0.000    999.000    999.000

Thresholds
X1$1              -4.098      0.565     -7.251      0.000
X2$1              -0.278      0.122     -2.275      0.023
X3$1              -0.567      0.218     -2.597      0.009
X4$1              -1.380      0.198     -6.962      0.000
X5$1              -1.389      0.171     -8.143      0.000
X6$1              -1.617  0.184     -8.804      0.000
X7$1              -1.998      0.174    -11.449      0.000
X8$1              -2.491      0.160    -15.559      0.000
X9$1              -2.432      0.178    -13.635      0.000

(a) (b)

Residual Variances
FACTOR       999.000      0.000    999.000    999.000

New/Additional Parameters
F_STUDY_2 -0.470      0.188     -2.503      0.012
F_STUDY_3 0.073      0.109      0.666      0.505
F_STUDY_4 0.429      0.136      3.147    0.002
F_STUDY_5 0.581      0.223      2.603      0.009
F_SEX              0.180      0.082      2.187      0.029
F_RACE            0.124      0.091      1.363      0.173
X_INT              3.505      0.484      7.248      0.000
X_STUDY_2 -0.106      0.892     -0.119      0.905
X_STUDY_3 -0.437      0.462     -0.947      0.344
X_STUDY_4 -1.241      0.486     -2.555      0.011
X_STUDY_5 -1.132      0.679     -1.667      0.095
X_SEX             -0.613      0.239     -2.569      0.010
X_RACE             0.215      0.330      0.651      0.515

Figure 4. (a) Mplus input file of item 1 “breaks rules” MNLFA model. (b) Select Mplus output file of item 1 “breaks rules” MNLFA model.
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Table 2. Examining DIF in factor and item parameters using a sequential model building approach.

Factor mean Factor variance Item intercept Item loading

Model Covariate Parameters LL SF Est p Est p Est p Est p

Baseline 29 �13,603.1 1.050
Study 2 �1.07 <.01 0.19 .30
Study 3 �1.27 <.01 1.00 <.01
Study 4 �2.61 <.01 1.19 <.01
Study 5 �1.21 <.01 1.44 <.01
Sex 0.66 <.01 0.48 <.01
Race �0.84 <.01 0.54 <.01

Breaks rules 42 �13,467.8 1.022
Study 2 �0.65 <.01 �0.47 .01 �0.90 .38 �0.11 .91
Study 3 �0.85 <.01 0.07 .51 �0.70 .17 �0.44 .34
Study 4 �1.70 <.01 0.43 <.01 �0.79 .17 21.24 .01
Study 5 �0.87 <.01 0.58 .01 �0.71 .43 �1.13 .10
Sex 0.40 <.01 0.18 .03 �0.28 .37 20.61 .01
Race �0.58 <.01 0.12 .17 0.67 .12 0.22 .52

Harms property 41 �13,517.2 1.046
Study 2 �1.11 <.01 0.15 .40 1.30 .03 1.43 .36
Study 3 �1.37 <.01 1.05 <.01 1.13 <.01 21.48 <.01
Study 4 �2.65 <.01 1.14 <.01 1.72 <.01 �0.37 .39
Study 5 �1.26 <.01 1.40 <.01 0.93 .01 �0.20 .76
Sex 0.65 <.01 0.48 <.01 0.04 .76 �0.20 .08
Race �0.84 <.01 0.54 <.01 0.08 .67 0.14 .29

Breaks things 41 �13,594.4 0.980
Study 2 �1.05 <.01 0.23 .21 0.55 .23 �0.03 .97
Study 3 �1.28 <.01 1.00 <.01 1.25 <.01 0.56 .19
Study 4 �2.60 <.01 1.22 <.01 0.72 .02 0.74 .13
Study 5 �1.20 <.01 1.47 <.01 0.96 .01 0.50 <.01
Sex 0.65 <.01 0.48 <.01 0.16 .35 �0.31 .21
Race �0.84 <.01 0.52 <.01 0.23 .44 0.81 .05

Takes property 41 �13,577.4 1.039
Study 2 �1.09 <.01 0.21 .26 �0.23 .58 �0.18 .68
Study 3 �1.35 <.01 0.97 <.01 0.79 <.01 �0.16 .58
Study 4 �2.66 <.01 1.18 <.01 0.42 .17 �0.27 .41
Study 5 �1.29 <.01 1.39 <.01 1.38 .03 0.48 .55
Sex 0.67 <.01 0.50 <.01 �0.30 .10 �0.23 .23
Race �0.83 <.01 0.56 <.01 �0.23 .29 �0.11 .64

Fights 41 �13,520.6 1.032
Study 2 �1.04 <.01 0.15 .43 1.24 .22 0.83 .30
Study 3 �1.16 <.01 1.08 <.01 21.59 <.01 20.62 .01
Study 4 �2.56 <.01 1.17 <.01 0.25 .54 0.07 .84
Study 5 �1.15 <.01 1.46 <.01 �0.69 .13 �0.40 .33
Sex 0.62 <.01 0.48 <.01 0.41 .01 �0.23 .10
Race �0.83 <.01 0.50 <.01 0.10 .63 0.11 .54

Lies 41 �13,571.0 1.025
Study 2 �1.03 <.01 0.25 .17 20.99 .01 �0.55 .21
Study 3 �1.30 <.01 1.05 <.01 �0.32 .15 20.96 <.01
Study 4 �2.63 <.01 1.24 <.01 �0.59 .05 20.89 .01
Study 5 �1.33 <.01 1.55 <.01 0.41 .40 21.31 <.01
Sex 0.69 <.01 0.48 <.01 20.40 .03 �0.21 .16
Race �0.87 <.01 0.54 <.01 �0.11 .57 20.41 .01

Yells at others 41 �13,567.4 1.033
Study 2 �0.99 <.01 0.08 .67 2.35 .17 2.59 .10
Study 3 �1.23 <.01 1.02 <.01 20.97 <.01 20.65 <.01
Study 4 �2.62 <.01 1.23 <.01 20.75 .03 20.73 <.01
Study 5 �1.14 <.01 1.44 <.01 21.17 .01 �0.44 .26
Sex 0.70 <.01 0.47 <.01 20.77 <.01 �0.17 .19
Race �0.84 <.01 0.54 <.01 �0.31 .14 20.29 .04

Stubborn 41 �13,507.2 1.037
Study 2 �1.27 <.01 0.49 .01 1.06 .23 �0.44 .24
Study 3 �1.26 <.01 1.05 <.01 20.90 .01 20.64 .01
Study 4 �2.53 <.01 1.22 <.01 22.25 <.01 20.97 <.01
Study 5 �1.13 <.01 1.51 <.01 22.22 <.01 21.04 <.01
Sex 0.71 <.01 0.44 <.01 20.77 <.01 �0.11 .28
Race �0.86 <.01 0.56 <.01 0.01 .97 �0.16 .18

Teases others 41 �13,576.5 1.036
Study 2 �1.20 <.01 0.32 .08 0.69 .27 �0.40 .23
Study 3 �1.27 <.01 1.02 <.01 20.60 .02 20.47 .02
Study 4 �2.65 <.01 1.24 <.01 �0.63 .09 20.61 .01
Study 5 �1.16 <.01 1.45 <.01 21.43 .00 20.67 .03
Sex 0.66 <.01 0.51 <.01 �0.36 .09 20.35 .01
Race �0.82 <.01 0.51 <.01 20.58 .01 �0.18 .19

Note. LL: log-likelihood; SF: scaling factor used in likelihood ratio test; significant item moderation effects are bolded.
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likelihood estimation with robust standard errors (i.e., sand-
wich estimator) and chi-square test statistic (Muth�en &
Muth�en, 2017). See Table 2 for the number of parameters,
log-likelihood, and scaling factor for each model, as well as
parameter estimates and p-values for the factor mean, factor
variance, item intercept, and factor loading for each model.

If any item-moderation model results in a non-significant
LRT, no covariate effects are estimated for that item inter-
cept or factor loading, even if the p-values for a given effect
are significant. If an item-moderation model does result in a
significant LRT, as is the case for all item models examined
in Table 2, only item-specific covariate effects with signifi-
cant p-values are kept. For example, examining Table 2, it
can be seen that for the item lies, the covariate sex signifi-
cantly moderates the item intercept but not the item load-
ing, while the covariate race significantly moderates the item
loading but not the item intercept. As a result, for the item
lies, the moderated effect of item loading on sex is removed,
while the moderated effect of item intercepts on race
is removed.

8.3. Final MNLFA Models

After removing any covariate effects for either of the two
reasons described above, a new, penultimate model is esti-
mated, in which all covariates moderate the factor mean
and variance, while only item-specific covariate effects with

significant p-values are kept (as described above). An anno-
tated Mplus input file for the penultimate model is pre-
sented in Figure 5a. Again, only item-specific moderation
effects presented in Table 2 are kept for this next-to-last
model. Likewise, Figure 5b provides the select Mplus output
of the next-to-last MNLFA model. Examining the model
results, the covariate moderation of certain item intercepts
is presented in the X2 ON, X3 ON, etc. subsections. For
example, for item 2 “Harms property,” it can be seen that
study_3 and study_4 were significant moderators of the item
intercept. Likewise, covariate moderation of certain item
loadings is presented in the New/Additional Parameters sub-
section. For example, for item 6 “Lies,” it can be seen that
only study_5 and race were significant moderators of
the loading.

After examining the output from the next-to-last
MNLFA model, all non-significant item moderation effects
are discarded, leaving only significant moderators of item
intercepts and loadings (in addition to always keeping mod-
eration of factor parameters regardless of significance). This
last pruning effort results in the final MNLFA model.
Again, all models used maximum likelihood estimation with
robust standard errors, with factor scores estimated using
the expected a posteriori (EAP) method (i.e., mean of the
posterior distribution) and saved for each individual. See
Tables 3 and 4 for parameter estimates from the final
MNLFA model.

title: Penultimate MNLFA model

data: 
file = data_mnlfa.dat; 

variable:
names = id study_id study_1-study_5 sex race x1-x9 hs; 
usevariables =study_2 - study_5 sex race x1-x9; 
categorical = x1-x9; 
missing = all (-999); 
constraint = study_2 - study_5 sex race; 

analysis:
estimator = mlr;
link = logit; 
processors = 1; 

model:
Factor BY x1*1 (x1_loading); ! label for moderation of item 1 factor loading
Factor BY x2*1 (x2_loading); ! label for moderation of item 2 factor loading
Factor BY x3*1 (x3_loading); ! label for moderation of item 3 factor loading
Factor BY x4*1; ! no label needed, as no sig. moderation of item 4 factor loading
Factor BY x5*1 (x5_loading); ! label for moderation of item 5 factor loading
Factor BY x6*1 (x6_loading); ! label for moderation of item 6 factor loading
Factor BY x7*1 (x7_loading); ! label for moderation of item 7 factor loading
Factor BY x8*1 (x8_loading); ! label for moderation of item 8 factor loading
Factor BY x9*1 (x9_loading); ! label for moderation of item 9 factor loading

! allow covariates to moderate factor mean (linear function) 
Factor ON study_2 - study_5 sex race; 
[Factor@0]; 

Factor (factor_variance); 

! moderation of item intercepts (previously determined from Table 2)
! no moderation of item x1 intercept
x2 ON study_2-study_5;
x3 ON study_3-study_5;
x4 ON study_3 study_5;
x5 ON study_3 sex;
x6 ON study_2 sex;
x7 ON study_3-study_5 sex;
x8 ON study_3-study_5 sex;
x9 ON study_3 study_5 race;

model constraint: 
new (f_study_2 f_study_3 f_study_4 f_study_5 f_sex f_race); 

! intercepts for loading moderation equation
new (int1 int2 int3 int5 int6 int7 int8 int9); ! no sig. moderators of x4 loading

new (x1_study_4 x1_sex);
new (x2_study_3); 
new (x3_study_5); 
! no loading moderation of x4
new (x5_study_3); 
new (x6_study_3 x6_study_4 x6_study_5 x6_race);
new (x7_study_3 x7_study_4 x7_race);
new (x8_study_3 x8_study_4 x8_study_5);
new (x9_study_3 x9_study_4 x9_study_5 x9_sex);

! allow covariates to moderate factor variance - use log-linear function to avoid negative variance
factor_variance = EXP(f_study_2*study_2 + f_study_3*study_3 + 
f_study_4*study_4 + f_study_5*study_5 + f_sex*sex + f_race*race);

! allow covariates to moderate factor loadings
x1_loading = int1 + x1_study_4*study_4 + x1_sex*sex;
x2_loading = int2 + x2_study_3*study_3;
x3_loading = int3 + x3_study_5*study_5;
! no loading moderation of x4
x5_loading = int5 + x5_study_3*study_3;
x6_loading = int6 + x6_study_3*study_3 + x6_study_4*study_4 + 
x6_study_5*study_5 + x6_race*race;
x7_loading = int7 + x7_study_3*study_3 + x7_study_4*study_4 + 
x7_race*race;
x8_loading = int8 + x8_study_3*study_3 + x8_study_4*study_4 + 
x8_study_5*study_5;    
x9_loading = int9 + x9_study_3*study_3 + 
x9_study_4*study_4 + x9_study_5*study_5 + x9_sex*sex;

(a)

Figure 5. (a) Mplus input file of penultimate MNLFA model. (b) Select Mplus output file of penultimate MNLFA model.
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9. Incorporating Factor Scores into Subsequent
Model Estimation

By allowing for covariate moderation of both item and fac-
tor parameters, the final MNLFA model provides estimates
of a construct that has been scaled commensurately across

studies. While it is possible to estimate the measurement
model of the MNLFA within a more complex structural
equation model, for example, this may not be feasible in
practice due to the complexity of the model. As suggested
by Bauer & Hussong (2009) and Curran et al. (2014), we

 
MODEL RESULTS 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 FACTOR   BY 
    X1               999.000      0.000    999.000    999.000 
    X2               999.000      0.000    999.000    999.000 
    X3               999.000      0.000    999.000    999.000 
    X4                  3.284      0.246     13.374      0.000 
    X5               999.000      0.000    999.000    999.000 
    X6               999.000      0.000    999.000    999.000 
    X7               999.000      0.000    999.000    999.000 
    X8               999.000      0.000    999.000    999.000 
    X9               999.000      0.000    999.000    999.000 
 
 FACTOR     ON 
    STUDY_2           -0.653      0.096     -6.768      0.000 
    STUDY_3           -0.828      0.070    -11.793      0.000 
    STUDY_4           -1.485      0.110    -13.510      0.000 
    STUDY_5           -0.722      0.130     -5.549      0.000 
    SEX                      0.436      0.049      8.940      0.000 
    RACE                  -0.519      0.053     -9.708      0.000 
 
 X2         ON 
    STUDY_2            0.513      0.336      1.527      0.127 
    STUDY_3            1.136      0.192      5.904      0.000 
    STUDY_4            1.471      0.259      5.687      0.000 
    STUDY_5            0.810      0.438      1.847      0.065 
 
 X3         ON 
    STUDY_3            0.752      0.376      2.002      0.045 
    STUDY_4            0.054      0.402      0.136      0.892 
    STUDY_5            0.302      0.528      0.572      0.567 
 
 X4         ON 
    STUDY_3            0.808      0.179      4.526      0.000 
    STUDY_5            0.678      0.335      2.025      0.043 
 
 X5         ON 
    STUDY_3           -1.195      0.221     -5.399      0.000 
    SEX                      0.451      0.131      3.434      0.001 
 
 X6         ON 
    STUDY_2           -0.818      0.288     -2.844      0.004 

    SEX                     -0.260      0.133     -1.960      0.050 
 
 X7         ON 
    STUDY_3           -0.613      0.265     -2.312      0.021 
    STUDY_4           -0.649      0.346     -1.876      0.061 
    STUDY_5           -0.795      0.363     -2.189      0.029 
    SEX                     -0.561      0.130     -4.310      0.000 
 
 X8         ON 
    STUDY_3           -0.489      0.293     -1.668      0.095 
    STUDY_4           -2.055      0.306     -6.721      0.000 
    STUDY_5           -1.965      0.413     -4.762      0.000 
    SEX                     -0.681      0.128     -5.302      0.000 
 
 X9         ON 
    STUDY_3            0.062      0.258      0.240      0.811 
    STUDY_5           -0.984      0.468     -2.102      0.036 
    RACE                  -0.283      0.132     -2.146      0.032 
 
 Intercepts 
    FACTOR             0.000      0.000    999.000    999.000 

 
 Thresholds 
    X1$1              -3.359      0.229    -14.672      0.000 
    X2$1               0.636      0.218      2.916        0.004 
    X3$1               0.119      0.402      0.296        0.767 
    X4$1              -0.841      0.207     -4.072       0.000 
    X5$1              -1.746      0.248     -7.043       0.000 
    X6$1              -1.704      0.214     -7.955       0.000 
    X7$1              -2.716      0.271    -10.018      0.000 
    X8$1              -3.558      0.265    -13.419      0.000 
    X9$1              -2.440      0.202    -12.058      0.000 
 
 Residual Variances 
    FACTOR           999.000      0.000    999.000    999.000 
 
New/Additional Parameters 
    F_STUDY_2          -0.270      0.179     -1.512      0.131 
    F_STUDY_3           0.022      0.129      0.170      0.865 
    F_STUDY_4           0.267      0.169      1.584      0.113 
    F_STUDY_5           0.336      0.243      1.381      0.167 
    F_SEX                     0.066      0.088      0.749      0.454 
    F_RACE                  0.100      0.093      1.076      0.282 
    INT1                        3.060      0.227     13.481      0.000 
    INT2                        3.458      0.326     10.603      0.000 
    INT3                     3.477      0.304      11.429      0.000 
    INT5                     3.261      0.291      11.215      0.000 
    INT6                     3.472      0.344      10.094      0.000 
    INT7                     3.181      0.321       9.925      0.000 
    INT8                        2.231      0.239       9.349      0.000 
    INT9                        2.214      0.209      10.575      0.000 
    X1_STUDY_4        -0.519      0.179     -2.897      0.004 
    X1_SEX                 -0.300      0.124      -2.408      0.016 
    X2_STUDY_3        -1.708      0.311      -5.493      0.000 
    X3_STUDY_5        -0.144      0.794      -0.182      0.856 
    X5_STUDY_3        -0.682      0.301      -2.268      0.023 
    X6_STUDY_3        -0.489      0.276      -1.773      0.076 
    X6_STUDY_4         0.087      0.372       0.234      0.815 
    X6_STUDY_5        -1.265      0.358      -3.532      0.000 
    X6_RACE               -0.408      0.177      -2.300      0.021 
    X7_STUDY_3         -0.667      0.322      -2.070      0.038 
    X7_STUDY_4         -0.777      0.410     -1.895      0.058 
    X7_RACE                0.053      0.153       0.345      0.730 
    X8_STUDY_3         0.137      0.269       0.511      0.610 
    X8_STUDY_4         -0.520      0.289     -1.798      0.072 
    X8_STUDY_5         -0.469      0.408     -1.148      0.251 
    X9_STUDY_3          0.501      0.262      1.914      0.056 
    X9_STUDY _4         0.376      0.218      1.726      0.084 
    X9_STUDY_5          0.061      0.533      0.115      0.909 
    X9_SEX                -0.036      0.131     -0.274      0.784 

(b)

Figure 5. (Continued).
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used estimated factor scores for each individual as a pre-
dictor of high school graduation (0¼ did not graduate,
1¼ did graduate). We also included sex, race, and dummy
indicators of study membership as predictors in the out-
come model. This is informed by simulation findings by
Curran et al. (2016, 2018), who found that including covari-
ates from the MNLFA model as predictors in a subsequent
outcome model resulted in little to no bias, but importantly,
failure to include covariates that are correlated with the
latent factor in either model resulted in substantial bias. We
wish to emphasize that the outcome model presented here
is provided as an illustration and that in practice, research-
ers should include covariates informed by existing literature
and substantive knowledge. Results from the logistic regres-
sion model (see Table 5) indicated the main effect of

baseline aggressive-disruptive behavior was significantly,
negatively related to high school graduation (Odds Ratio ¼
0.77, p < .001). Sex was a significant covariate (OR ¼ 0.76,
p ¼ .002), with males being less likely to complete high
school than females. There were also significant differences
across studies; students in Study 3 were more likely to
graduate high school than those in Study 1 (OR ¼ 3.40, p
< .001), while students in Study 4 were less likely (OR ¼
0.05, p < .001).

10. Discussion

This article provides an overview of MNLFA, demonstrating
its flexibility for use within IDA where the goal is to
develop a construct that has properly scaled across studies.
We offer a tutorial on implementing this model in practice,
demonstrating the steps involved in the admittedly complex
model-building process of developing an appropriate
MNLFA model. Further, to allow applied researchers to
more easily implement and modify these models, all empir-
ical data and code used for analyses are provided at: https://
github.com/jmk7cj/SEM-mnlfa. This is in addition to the

Table 4. Final MNLFA model examining covariate effects on item intercepts and factor loadings.

Intercept Loading

Covariate effect Estimate SE p Estimate SE p

1. Breaks rules �3.33 0.21 <.01 2.91 0.21 <.01
Study 4 – – – �0.43 0.12 <.01
Sex – – – �0.34 0.10 <.01

2. Harms property 0.50 0.21 .02 3.36 0.31 <.01
Study 3 0.98 0.18 <.01 �1.73 0.30 <.01
Study 4 1.43 0.22 <.01 – – –

3. Breaks things 0.06 0.24 .82 3.29 0.27 <.01
Study 3 0.66 0.20 <.01 – – –

4. Takes property �0.84 0.20 <.01 3.13 0.22 <.01
Study 3 0.81 0.15 <.01 – – –
Study 5 0.43 0.28 .12 – – –

5. Fights �1.71 0.25 <.01 3.19 0.27 <.01
Study 3 �1.21 0.21 <.01 �0.79 0.27 <.01
Sex 0.20 0.12 <.01 – – –

6. Lies �1.54 0.19 <.01 2.98 0.21 <.01
Study 2 �1.05 0.25 <.01
Study 5 – – – �0.77 0.27 <.01
Race – – – �0.38 0.17 .02

7. Yells at others �2.53 0.23 <.01 2.88 0.23 <.01
Study 3 �0.48 0.21 .02 �0.54 0.23 .02
Study 5 �0.93 0.30 <.01 – – –
Sex �0.52 0.12 <.01 – – –

8. Stubborn �3.04 0.18 <.01 2.09 0.15 <.01
Study 4 �1.15 0.14 <.01 – – –
Study 5 �1.39 0.27 <.01 – – –
Sex �0.60 0.12 <.01 – – –

9. Teases others �2.45 0.18 <.01 2.46 0.17 <.01
Study 5 �1.01 0.29 <.01 – – –
Race �0.18 0.12 .13 – – –

Table 5. Logistic regression results of high school completion.

Odds Ratio 95% C.I. p

Study 2 1.52 [0.97, 2.39] .065
Study 3 0.07 [0.86, 1.32] .546
Study 4 3.40 [2.36, 4.89] <.001
Study 5 0.05 [0.03, 0.08] <.001
Male 0.76 [0.63, 0.91] .002
White 1.19 [0.97, 1.46] .091
Factor 0.77 [0.71, 0.84] <.001

Note. Intercept ¼ 1.14 logits (SE¼ 0.11).

Table 3. Final MNLFA model examining covariate effects on factor mean
and variance.

Covariate effect Estimate SE p

Factor mean
Study 2 �0.62 0.09 <.01
Study 3 �0.87 0.07 <.01
Study 4 �1.51 0.10 <.01
Study 5 �0.67 0.13 <.01
Sex 0.44 0.05 <.01
Race �0.54 0.06 <.01

Factor variance
Study 2 �0.25 0.17 .15
Study 3 0.17 0.12 .13
Study 4 0.24 0.13 .07
Study 5 0.40 0.21 .06
Sex 0.07 0.08 .41
Race 0.12 0.09 .20

Note. Study 1 represents the reference group; Sex is coded (0¼ female,
1¼male); Race is coded (0¼ Black, 1¼White).
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annotated Mplus input and output files already discussed in
detail. Results from the empirical demonstration support
findings from prior research (Bradshaw et al., 2010), in
which ratings of first-grade students on the aggressive-dis-
ruptive behavior subscale of the TOCA-R were found to
have a negative association with high school graduation.

By combining raw data pooled across five separate pre-
vention trials, we were likely able to produce findings that
are more robust than any single study may have found. This
was achieved through a larger overall sample size, increased
frequencies of low base-rate behaviors (e.g., item “breaks
things”), and the ability to account for measurement invari-
ance or differential item functioning by allowing multiple
covariates to simultaneously moderate item and factor
parameters. As data repositories and open-source sharing of
registered studies continue to grow in popularity (e.g.,
Registry of Efficacy and Effectiveness Studies), there is a
rapid increase in the need for appropriate, advanced meth-
odological tools. It is our hope this paper provides a tutorial
on the model building process of MNLFA for IDA.
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