

Structural Equation Modeling: A Multidisciplinary Journal

ISSN: (Print) (Online) Journal homepage: <u>www.tandfonline.com/journals/hsem20</u>

Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data Analysis: A Tutorial

Joseph M. Kush, Katherine E. Masyn, Masoumeh Amin-Esmaeili, Ryoko Susukida, Holly C. Wilcox & Rashelle J. Musci

To cite this article: Joseph M. Kush, Katherine E. Masyn, Masoumeh Amin-Esmaeili, Ryoko Susukida, Holly C. Wilcox & Rashelle J. Musci (2023) Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data Analysis: A Tutorial, Structural Equation Modeling: A Multidisciplinary Journal, 30:1, 149-164, DOI: <u>10.1080/10705511.2022.2070753</u>

To link to this article: <u>https://doi.org/10.1080/10705511.2022.2070753</u>

Published online: 23 May 2022.

Submit your article to this journal 🗹

Article views: 985

View related articles

View Crossmark data 🗹

2	

Citing articles: 1 View citing articles

Utilizing Moderated Non-linear Factor Analysis Models for Integrative Data Analysis: A Tutorial

Joseph M. Kush^a (), Katherine E. Masyn^b (), Masoumeh Amin-Esmaeili^a (), Ryoko Susukida^a (), Holly C. Wilcox^a () and Rashelle J. Musci^a ()

^aJohns Hopkins Bloomberg School of Public Health; ^bGeorgia State University School of Public Health

ABSTRACT

Integrative data analysis (IDA) is an analytic tool that allows researchers to combine raw data across multiple, independent studies, providing an improved measurement of latent constructs as compared to single study analysis or meta-analyses. This is often achieved through the implementation of moderated non-linear factor analysis (MNLFA), an advanced modeling approach that allows for covariate moderation of item and factor parameters. The current paper provides an overview of this modeling technique, highlighting distinct advantages most apt for IDA. We further illustrate the complex model building process involved in MNLFA by providing a tutorial using empirical data from five separate prevention trials. The code and data used for analyses are also provided.

KEYWORDS

Factor scores; integrative data analysis; measurement invariance; moderated non-linear factor analysis

Routledge

Taylor & Francis Group

The practice of combining information across multiple independent studies, commonly referred to as integrative data analysis (IDA), is becoming increasingly popular in the social and medical sciences (see Graham et al., 2017; Gross et al., 2018, Rose et al., 2018; Sibley & Coxe, 2020). IDA may be simply defined as "fitting models to data that have been pooled across multiple studies" (Curran & Hussong, 2009, p. 82). IDA provides distinct advantages over single study analysis or even meta-analyses, including increased power through larger combined sample sizes, the ability to formulate and explore previously unachievable research questions (e.g., combining multiple cross-sectional studies measured at different timepoints to allow for longitudinal data analysis), improved measurement of latent constructs through robust psychometric instruments and obtaining increased frequencies of low base-rate behaviors. More recently, researchers have begun incorporating moderated non-linear factor analysis (MNLFA) into IDA studies as a novel modeling approach, allowing researchers to test whether a measure is invariant across multiple covariates simultaneously, such as race, sex, and study membership.

Although the current methodological development of MNLFA has been quite extensive (Bauer, 2017; Bauer & Hussong, 2009; Curran et al., 2014; Curran & Hussong, 2009), there is a growing need among applied researchers for guidance on implementing these models in practice within the larger IDA framework. There are several challenges and decisions researchers must consider when conducting these analyses, including determining which combinations of predictors should be included as moderators of the factor mean and variance, as well as considering differential item functioning among certain item intercepts

and loadings. The overall aim of this paper is to provide a detailed tutorial on the process of MNLFA model building and implementation for broader IDA studies.

1. Integrative Data Analysis

Incorporating data from multiple sources has the ability to yield greater insight into scientific questions than any single study by providing researchers with more heterogeneous populations, larger sample sizes, and greater precision in parameter estimates, for example. In reality, the practice of combining and analyzing quantitative data is largely varied. One of the most popular methods, meta-analysis (see Glass, 1976), allows for researchers to analyze results, such as summary statistics or point estimates and standard errors that have been presented in different but comparable studies. As described by Cooper and Patall (2009), this traditional approach to meta-analysis involves using aggregated data, in which a researcher: (1) systematically searches and collects studies that have been conducted on the topic of interest, (2) extracts effect sizes based on reported summary statistics, and (3) combines these estimates using statistically sound techniques to obtain a single average effect size and confidence interval (Cooper, 2009). Notably, however, Cooper and Patall (2009) differentiate between meta-analysis based on aggregated data, as described above, vs. meta-analysis based on individual participant-level data. The latter, often called data synthesis, is referred to in this paper as integrative data analysis, which involves "the central collection, checking, and re-analysis of the raw data from each study to obtain combined results" (Cooper & Patall, 2009, p. 166). By accessing the raw data from each study, IDA

CONTACT Joseph Kush 🐼 jkush1@jhu.edu 🗈 Johns Hopkins Bloomberg School of Public Health, 624 N Broadway Room 841, Baltimore, MD 21205, USA. © 2022 Taylor & Francis Group, LLC

allows researchers to replicate analyses performed in the original studies, to improve precision in effect estimates by increasing the sample size and statistical power, as well as to estimate both within-study and between-study effects, among other benefits.

When pooling data across multiple studies for IDA, a great deal of effort is required in preparing the data for statistical analyses. The first basic step of any pre-statistical data harmonization process involves collecting the datasets and obtaining codebooks from the included studies. Next, it is often useful to construct a concordance table, documenting which variables are collected across studies. This table acts as a central codebook, allowing researchers to confirm response scale types, identify common data domains, and examine variables over time if data were collected longitudinally. Finally, variables are harmonized across studies, or made more homogenous to allow for a more straightforward analytic plan. This step involves the identification of relevant domains and instruments, developing uniform variable names and labels, creating mergeable data, etc. For example, consider two studies that measured aggressive behavior in first-grade students. Both studies shared the same item stem: "This student exhibits aggressive behaviors, such as breaking rules, harming property, and teasing others." However, the two studies differed in the response options: Study A measured this item on a five-point Likert scale (0 = "Never" to 4 = "Almost always"), while Study B measured this item as a binary variable (0 = "False," 1 ="True"). In this example, a researcher conducting IDA may consider collapsing a sparsely distributed ordinal variable in Study A into a binary variable to ensure the two studies have equivalent response categories. This is often referred to as "logical harmonization" throughout the literature, in which the original items are transformed to have logically equivalent response scales (see Hussong et al., 2013). Only after data have been appropriately harmonized may researchers move on to establishing a theoretical construct on a common scale across studies. MNLFA provides researchers with an advanced modeling approach that can accommodate such data in an effort to estimate latent factors.

2. Factor Analysis and the 2-PL Model

The methodological development of MNLFA is rooted in psychometric theory, with contributions from both the linear and generalized factor analysis framework (Bollen, 1989; Muthén, 1984; Rabe-Hesketh et al., 2004; Skrondal & Rabe-Hesketh, 2004), as well as from the two-parameter logistic (2-PL) model from item response theory (IRT; Birnbaum, 1968; Bock & Aitkin, 1981; Lord & Novich, 1968). As a starting point, consider the following simple linear factor model (Jöreskog, 1967):

$$\mathbf{y}_i = \mathbf{v} + \mathbf{\Lambda} \mathbf{\eta}_i + \mathbf{\varepsilon}_i, \tag{1}$$

in which *i* indexes individual observations, y_i is a *p*-dimensional vector of observed continuous variables, **v** is a *p*-dimensional vector of measurement intercepts, **A** is a

 $p \times m$ matrix of factor loadings, $\mathbf{\eta}_i$ is an $m \times 1$ vector of latent variables, and $\mathbf{\varepsilon}_i$ is a *p*-dimensional vector of measurement errors. It is assumed that $E(\mathbf{\varepsilon}_i) = \mathbf{0}$, $\operatorname{Cov}(\mathbf{\eta}_i, \mathbf{\varepsilon}_i) = \mathbf{0}$, with a model implied variance-covariance matrix given by

$$\Sigma = \Lambda \Phi \Lambda' + \Theta, \qquad (2)$$

where $V(\mathbf{\eta}_i) = \mathbf{\Phi}$, and $V(\mathbf{\epsilon}_i) = \mathbf{\Theta}$, a diagonal matrix. This model is identified so long as a unique solution can be obtained for each parameter. The scale of the latent factor may be set in several ways, dependent upon the central research question. For example, fixing the intercept and factor loading of the first item to 0 and 1, respectively, allows the researcher to freely estimate the factor mean and variance. Conversely, the factor mean and variance may be fixed to 0 and 1, respectively, placing the factor on a standard normal distribution.

An important concept in factor analysis is measurement invariance (also known as factorial invariance or measurement equivalence). Measurement invariance represents the degree to which observed item distributions are dependent only upon an individual's latent variable and no other characteristics and may be used for investigating correspondence in factor models across studies through traditional techniques (Bauer et al., 2020; Jöreskog, 1971; Meredith, 1993; Sörbom, 1974). This represents one of the most fundamental concerns of IDA, namely, ensuring that the hypothesized factor being measured is in fact common across studies, as well as across other covariates (e.g., sex, race, or time). Levels of measurement invariance include dimensional invariance (same number of factors across groups), metric invariance (same factor loadings across groups to allow for comparisons of factor variances/covariances), and strong factorial invariance (same item intercepts to allow for unbiased group differences in factor means), among others (Little et al., 2006). The process of testing for measurement invariance in factor analysis involves the following general procedure. First, a baseline two-group model (with constraints for dimensional and configural invariance) is established, in which a log-likelihood value is estimated using maximum likelihood for example, and stored. Then, one progressively specifies more stringent constraints, again storing the log-likelihood value. Finally, a likelihood ratio difference test is calculated for the current model in comparison to the prior model (in which the current model is nested) to determine the effect of a given level of measurement invariance. If the likelihood ratio difference test is non-significant (e.g., p > .05), measurement invariance is established for a given constraint. By demonstrating invariance across more stringent constraints, one can provide more evidence that the same factor structure is being measured in both groups.

We next consider the 2-PL model from the IRT literature. Although both factor analysis and the 2-PL model assume continuous latent variables, these models differ in item scale type; linear factor models require continuous items, while 2-PL models require binary items. Consider the following 2-PL model, in which we assume a single continuous latent trait (i.e., factor) underlies a set of observed binary item responses. Assuming each item follows a conditional Bernoulli distribution, the probability of observing a correct response (i.e., score of 1) for a single item y can be given as

$$P(y_i = 1|\theta_i) = \frac{e^{[\alpha(\theta_i - \delta)]}}{1 + e^{[\alpha(\theta_i - \delta)]}},$$
(3)

in which *i* indexes individual observations, θ_i is the latent trait score, α is the discrimination parameter, and δ is the difficulty parameter. It is assumed that the item response is independent across observations and conditionally independent across the item, conditional on the latent trait. To set the scale of the latent factor, it is typical to assume $\theta_i \sim$ N(0,1), allowing the discrimination and difficulty parameters to be freely estimated. In the 2-PL model, the discrimination parameter represents the rate at which the probability of a correct response increases as the latent trait increases. In general, a highly discriminating item can better distinguish between different values of the latent trait (particularly when θ_i is near δ). The difficulty parameter may be defined as $P(y_i = 1 | \theta_i = \delta) = .5$, and represents the value of the latent trait at which the probability of a correct response equals .5. Although we focus our attention on the 2-PL model for simplicity, there are numerous alternative IRT models that may be of interest to the researcher. For example, the three-parameter logistic (3-PL) model includes an additional lower asymptote parameter χ , often referred to as the guessing parameter. Likewise, the rating scale model or partial credit model may be appropriate for polytomous items, such as Likert-scale responses.

As with factor analysis, it is important to establish measurement invariance for the 2-PL model. Within the IRT framework, measurement invariance can be investigated through differential item functioning (DIF; Holland & Wainer, 1993). After controlling for the latent trait, an item without bias should perform the same for two individuals, regardless of a group membership. When the probability of a correct response for an item differs over groups with equal values of the latent trait, the item is said to exhibit DIF. Although there are a variety of methods that can be used to assess DIF in the 2-PL model, DIF in the discrimination and difficulty parameters is typically jointly tested using a likelihood ratio test (Belzak, 2020; Thissen et al., 1993). As a general strategy similar to the process described earlier for factor analysis, the first step involves fitting a baseline 2-PL model with all parameters varying between the reference and focal groups. Next, a (nested) restricted model is estimated, in which the parameters for a single item are constrained to be equal between groups. Finally, the likelihood ratio test statistic is computed, with a significant (e.g., p < .05) test statistic indicating DIF.

3. Factor Estimation Considerations in IDA

There are four major issues researchers face when using traditional measurement models and invariance testing techniques, all of which can be appropriately dealt with using MNLFA: (1) some items not being shared across

studies, (2) continuous covariates, (3) sequential testing of covariates, and (4) items with different scale types. First, researchers conducting IDA often encounter some items not being shared across studies (i.e., an item exists in one study but does not in another), which may be considered as missing data and handled through maximum likelihood estimation (Graham, 2003; Schafer & Graham, 2002). A similar difficulty includes scenarios in which there are no items that are common to all studies being used in IDA. However, this may be addressed by linking or chaining the studies together. For example, perhaps Study A includes items x1-x5, Study B includes items x5-x10, and Study C includes items x10-x15. While there are no items common to all studies, item x5 is common to Study A and Study B, while item x10 is common to Study B and Study C. Thus, by including parameter invariance constraints on these parameters, estimated factor scores across the three studies based on a common metric may be obtained.

Regarding the second (continuous covariates) and third (sequential testing of covariates) issues highlighted above, there are two apparent limitations to traditional approaches to measurement invariance and DIF testing. Typically, when using multi-sample approaches, (a) discrete groups are (b) tested in succession. First, while discrete group testing may be a natural way to compare group membership (e.g., treatment vs. control, old vs. young, or females vs. males), it may be desirable to consider invariance testing across continuous covariates, such as age or IQ. Additionally, even if researchers are interested in establishing invariance across multiple different group comparisons, this process is typically conducted sequentially (e.g., invariance between treatment vs. control is tested, then invariance between old vs. young is tested, etc.). With a large number of groups, the number of tests to conduct may become unwieldy, while the cell sizes of the various strata may become small.

A final consideration of factor estimation in IDA deals with item scale type. For the two models presented, only continuous items are appropriate for linear factor analysis, while only binary items are appropriate for the 2-PL model. The limitations of these requirements become apparent for IDA of studies with potentially different instruments, different items, and different item scale types. Consider a model in which the latent factor is measured by a combination of item scale types (e.g., both continuous and binary items). Neither single model presented thus far is capable of handling such data, as is often encountered when pooling datasets. In direct response to the concerns raised here, MNLFA has been developed from the generalized factor analysis and non-linear item-level factor analysis literature, and represents a more flexible approach ideal for use in IDA.

4. Moderated Non-linear Factor Analysis

Originally proposed by Bauer and Hussong (2009), MNLFA builds upon generalized factor analysis (Muthén, 1984; Rabe-Hesketh et al., 2004; Skrondal & Rabe-Hesketh, 2004), with models that can accommodate items of different scale types (e.g., binary, ordinal, or continuous), as well as items of mixed scale types (e.g., both binary and continuous). Consider the following generalized factor model:

$$g_i(\mu_{ij}) = \upsilon_i + \lambda_i \eta_j, \qquad (4)$$

in which μ_{ij} is the expected value of item *i* for observation *j*, $g_i(\cdot)$ specifies the desired link function, υ_i is the measurement intercept, λ_i is the factor loading, and η_j is the latent factor, assumed to be normally distributed as $\eta_j \sim N(\alpha, \psi)$. While the generalized factor model does not include a specific error term, measurement error is implicitly taken into account by modeling the conditional-response distribution for a given item. For example, for a set of continuous indicators, a normal conditional response distribution, $y_{ij}|\eta_j \sim N(\mu_{ij}, \sigma_i^2)$, with the identity link function, $g_i(\mu_{ij}) = \mu_{ij}$, gives

$$\mu_{ij} = \upsilon_i + \lambda_i \eta_j. \tag{5}$$

Notice Equation (5) represents a reparameterization of the linear factor model presented in Equation (1). Likewise, consider a set of binary indicators, in which a conditional Bernoulli response distribution, $y_{ij}|\eta_j \sim Ber(\mu_{ij})$, with the logit link function, $g_i(\mu_{ij}) = \ln \left[\frac{\mu_{ij}}{(1 - \mu_{ij})} \right]$, gives

$$\ln\left(\frac{\mu_{ij}}{1-\mu_{ij}}\right) = \upsilon_i + \lambda_i \eta_{j.}$$
(6)

We note that generalized factor models may also be expressed in terms of the inverse link function, $g_i^{-1}(\cdot)$:

$$\mu_{ij} = g_i^{-1} \big(\upsilon_i + \lambda_i \eta_j \big). \tag{7}$$

Now, substituting the inverse logit link function (i.e., logistic function) into Equation (6), the expected value can be more naturally expressed as

$$\mu_{ij} = \frac{1}{1 + e^{\left[-\left(\nu_i + \lambda_i \eta_j\right)\right]}}$$
(8a)

$$=\frac{e^{(\upsilon_i + \lambda_i \eta_j)}}{1 + e^{(\upsilon_i + \lambda_i \eta_j)}}$$
(8b)

$$=\frac{e^{\left\{\lambda_{i}\left[\eta_{j}-(-\upsilon_{i}/\lambda_{i})\right]\right\}}}{1+e^{\left\{\lambda_{i}\left[\eta_{j}-(-\upsilon_{i}/\lambda_{i})\right]\right\}}}.$$
(8c)

Comparing Equations (8a)–(8c) with Equation (3), it can be seen that this model represents a reparameterization of the 2-PL model, in which $v_i = -\alpha \delta$, $\lambda_i = \alpha$, and $\eta_i = \theta_i$.

One of the greatest benefits of the generalized factor analysis framework is the ability to model different response distributions and link functions for different items simultaneously. The flexibility of this model requires the assumption of conditional independence for the items, in which individual univariate distributions are modeled for each item, rather than assuming a multivariate distribution for the set of items. For example, one could choose a normal distribution with an identity link function for a continuous item, a Bernoulli distribution with a logit link function for a binary item, a Poisson distribution with a log link function for a count item, and a multinomial distribution with a logit link function for a nominal (e.g., unordered polytomous) item, with all parameters, estimated simultaneously.

4.1. MNLFA

One limitation of the generalized factor model is the assumption of parameter invariance across individuals. Examining Equation (4), the four parameters that define the model (α = latent factor mean, ψ = latent factor variance, υ_i = intercept for item *i*, and λ_i = factor loading for item *i*) are assumed equal between groups (e.g., treatment and control units, males and females, or between individuals from different studies). MNLFA extends the generalized factor analysis framework by allowing the four model parameters to vary as a function of covariates.

We first focus on allowing observed covariate moderation of the latent factor mean and variance. Here, the latent factor is assumed to be normally distributed as $\eta_j \sim N(\alpha_j, \psi_j)$, with parameters defined as (Bauer et al., 2020; Bauer & Hussong, 2009; Curran et al, 2014):

$$\psi_j = \psi_0 + e^{\left(\sum_{w=1}^W \beta_w x_{wj}\right)},\tag{10}$$

in which x_w denotes observed moderator x, with W total moderators, α_0 and ψ_0 are the factor mean and variance, respectively, when all moderators are equal to 0, and α_w and β_w represent the effect of the moderator on the factor mean and variance, respectively. To ensure a non-negative variance estimate, Equation (10) is modeled as a log-linear function of the moderators. Again, the scale of the latent factor is typically set by constraining the factor mean and variance to 0 and 1, respectively.

Next, we consider the observed covariate moderation of items. With the addition of *j* subscripts to the item intercept (v_{ij}) and factor loading (λ_{ij}) , the generalized factor model from Equation (4) is extended to

$$g_i(\mu_{ij}) = v_{ij} + \lambda_{ij}\eta_j, \qquad (11)$$

allowing the intercept and loading for observation j to uniquely differ as a (linear) function of the moderators, expressed as:

$$\upsilon_{ij} = \upsilon_{0i} + \sum_{w=1}^{W} \upsilon_{wi} x_{wj}, \tag{12}$$

$$\lambda_{ij} = \lambda_{0i} + \sum_{w=1}^{W} \lambda_{wi} x_{wj}.$$
 (13)

Now, v_{0i} and λ_{ij} are the item intercept and factor loading for individual *j* when all moderators are equal to 0, respectively, and v_{wi} and λ_{wi} represent the effect of the moderator on the item intercept and factor loading, respectively. See Figure 1 for an example MNLFA path diagram.

There are two specific considerations of the MNLFA model worth noting. First, it is possible to allow for

Table 1. Sample demographic characteristics.

different moderators in Equations (9)–(13). For example, one could model sex as a moderator of the factor mean but not the factor variance. Likewise, one could model study membership as a moderator of the intercept of the first item, but not of the factor loading of the first item. Moreover, different items may also have different moderators (e.g., race moderates the intercept and loading of item 1, but only the loading of item 2). Second, it is not required that the conditional-response distribution for an item belonging to the exponential family, although this is assumed for the generalized linear factor model. For example, for a non-normally distributed continuous item with heavy tails, the Student's t distribution may be used.

Overall, the MNLFA model improves upon traditional measurement invariance testing by allowing multiple covariates to moderate different item and factor parameters simultaneously. Additionally, covariates may include both categorical and continuous variables, a limitation of more traditional measurement invariance testing techniques. It is also possible to reduce certain MNLFA model specifications to more familiar models, such as linear factor models or IRT models. However, by allowing for specifications of different response distributions and link functions for different items, MNLFA offers an extremely flexible alternative modeling approach to more traditional factor models. Importantly, the ability to estimate factors based on potentially different items pooled across studies, as well as allow for the moderation of multiple covariates simultaneously on the factor and item parameters makes MNLFA extremely suitable for use within IDA.

5. Applied Example: Aggressive-Disruptive Behavior among Elementary Students

We now present an applied example using empirical data from five independent prevention trials to estimate the effect of a latent aggressive-disruptive behavior factor on

		Sar	nple sizes across study			
	Race			Sex		
	Black	White	Fem	nale	Male	Total
Study 1	432	385	2	54	563	817
Study 2	7	444	2	34	217	451
Study 3	1,322	562	1,0	16	868	1,884
Study 4	556	83	3	02	337	639
Study 5	144	13		86	71	157
		ltem er	dorsement rates across	s study		
			Study			
	Study 1	Study 2	Study 3	Study 4	Study 5	Total
Breaks rules	.895	.525	.616	.521	.703	.661
Harms property	-	.175	.362	.202	.351	.307
Breaks things	.540	.175	.316	.152	.359	.331
Takes property	.668	.220	.417	.227	.487	.431
Fights	.816	.375	.360	.291	.487	.458
Lies	.738	.255	.438	.236	.583	.466
Yells at others	.816	.370	.490	.335	.506	.530
Stubborn	.876	.745	.620	.336	.551	.631
Teases others	.821	.575	.542	.382	.532	.578

Note. Item "harms property" was not measured in Study 1.

high school graduation. Previous research has demonstrated the Authority Acceptance subscale of the Teacher Observation of Classroom Adaptation-Revised (TOCA-R; Werthamer-Larsson et al., 1991), an instrument commonly used in schools to assess student behavior, to be related to several negative outcomes including later delinquent behavior and criminal justice involvement (Petras et al., 2004; 2005), as well as high school drop and unemployment (Bradshaw et al., 2010). Bradshaw & Kush (2020) found the TOCA-R to be a highly valid and reliable measure of aggressive and disruptive behavior among students as early as kindergarten. For the current applied example, we hypothesized baseline measures of aggressive-disruptive would behaviors be associated with later high school dropout.

To conduct integrative data analyses, data were drawn from the following five independent school-based clusterrandomized prevention trials: (1) JHU Center for Prevention and Early Intervention first-generation trial (Kellam et al., 1998), (2) JHU Center for Prevention and Early Intervention second-generation trial (Ialongo et al., 1999), (3) Schools and Families Educating Children Study (Tolan et al., 2004), (4) Fast Track Project (Conduct Problems Prevention Research Group, 2019), and (5)

(a)

! note: comments are designated by exclamation points title: CFA model for Study 4 ! title of analysis

data:

file = data_cfa.dat; ! name of datafile

variable:

names = id study_id study_1-study_5 sex race x1-x9 hs; ! names of columns in datafile usevariables = x1-x9; ! only need to use variables x1-x9 categorical = x1-x9; ! variables x1-x9 are categorical outcome variables useobservations = study_id == 4; ! constrain to individuals from study 4 missing = all (-999); ! missing data identifier

analysis:

estimator = wlsmv; ! weighted least squares with mean and variance adjusted fit statistics processors = 1; ! number of cores / processors for parallel processing

model:

Factor BY x1-x9; ! latent variable 'Factor' is measured by items 1 through 9

output:

standardized; ! can view standardized output (in addition to IRT parameterization)
stdyx;

Linking the Interests of Families and Teachers Study (Eddy et al., 2003). All studies administered similar versions of the TOCA-R. For this example, we focus on teacher ratings of first-grade students exclusively. In addition to increased statistical power through a larger combined sample size, conducting IDA on the combined data was useful for increasing two aspects of heterogeneity. First, racial subgroup sample sizes varied dramatically across studies; for example, Black students comprised $\sim 13\%$ of the sample in Study 5, but about 70% of the sample in Study 3 (see Table 1). Second, item endorsement rates also differed substantially across studies. For example, the item "Takes property" was endorsed by \sim 22% of students in Study 2, yet about 67% of students in Study 1. By combining data from multiple studies, we were able to collect more robust and nuanced findings than any single study could have provided. Thus, the overall goal was to establish a theoretical aggressive-disruptive behavior construct that has been placed on a common scale across studies. Statistical programming was conducted in R version 4.1.1 (R Core Team, 2020), relying on the MplusAutomation package (Hallquist & Wiley, 2018) to facilitate conducting analyses in Mplus version 8.4 (Muthén & Muthén, 2017). All syntax and data used for analyses are freely available at: https://github.com/jmk7cj/SEM-mnlfa.

(b) SUMMAI	RY OF A	NALYS	IS			
	Number o Number o	f groups f observa	tions			1 639	
	Number of dependent variables9Number of independent variables0Number of continuous latent variables1						
	Observed	depender	nt variab	les			
	Binary at X1 X7	nd ordere X2 X8	d catego X3 X9	orical (oro X4	linal) X5	X6	
	FACTO	is latent v R	ariables				
	Estimator Maximum Converger Maximum Maximum Converger Parameter Link	number nce criter number number nce criter ization	of iterat ion of steep of iterat ion for I	ions est desce ions for H H1	nt itera 11	tions	WLSMV 1000 0.500D-04 20 0.100D-03 DELTA PROBIT

THE MODEL ESTIMATION TERMINATED NORMALLY

MODEL FIT INFORMATION

Number of Free Parameters 18

Chi-Square Test of Model Fit

Value	92.346*
Degrees of Freedom	27
P-Value	0.0000

RMSEA (Root Mean Square Error Of Approximation)

Estimate	0.062
90 Percent C.I.	0.048 0.076

Pre	obability RMSI	EA <= .0:	5 0.0	078	X8\$1 X9\$1	0.422	0.051	8.242	0.000
CFI/TLI					Λ/ψ1	0.501	0.050	5.905	0.000
CI	77	0.0	0.4		Variances	0 (0 0	0.041	16717	0.000
	11 T	0.9	94 002		FACTOR	0.688	0.041	16./1/	0.000
11	-1	0.9	192						
Chi-Squa	are Test of Mod	lel Fit for	the Basel	ine Model	IRT PARAMI	ETERIZA	TION		
Va	lue	11	431.494				Т	wo-Taile	d
De	grees of Freed	om	36		E	stimate	S.E. Es	t./S.E. I	P-Value
Р-	Value		0.0000						
					Item Discrimi	nations			
SRMR (S	Standardized R	oot Mean	n Square R	esidual)					
					FACTOR B	Y			
Va	lue	0.	040		X1	1.486	0.143	10.425	0.000
					X2	3.283	0.598	5.488	0.000
Optimun	n Function Valu	ue for We	eighted Le	ast-Squares Estimator	X3	3.199	0.647	4.944	0.000
					X4	2.414	0.293	8.231	0.000
Va	lue	0.42026	5358D-01		X5	2.334	0.270	8.657	0.000
					X6	1.969	0.219	8.991	0.000
					X7	1.574	0.159	9.906	0.000
MODEL	RESULTS				X8	1.125	0.111	10.166	0.000
		,	т т' 1	1	X9	1.544	0.159	9.704	0.000
	Estimate	SE E	I wo-I aile	d Nalua	Itam Difficult	ing			
	Estimate	5.E. E	SL/S.E. I	- value	V1¢1	0.064	0.060	1.065	0 297
EACTO	D DV				X131 X2\$1	-0.004	0.000	-1.005	0.287
V1	1 000	0.000	000 000	000 000	X2\$1 X3\$1	1.078	0.001	16.056	0.000
X1 X2	1.000	0.000	31 220	0.000	XJ\$1 X4\$1	0.811	0.007	13 081	0.000
X2 X3	1.155	0.037	28 071	0.000	X451 X5\$1	0.811	0.002	10 272	0.000
X4	1.131	0.040	30.462	0.000	X6\$1	0.399	0.058	12 389	0.000
X5	1 1 1 0 8	0.037	29 864	0.000	X7\$1	0.505	0.003	8 029	0.000
X6	1.100	0.037	29.004	0.000	X8\$1	0.565	0.003	7.665	0.000
X7	1.073	0.030	26.000	0.000	X9\$1	0.358	0.061	5 843	0.000
X8	0.901	0.042	21 240	0.000	11901	0.000	0.001	5.015	0.000
X9	1.012	0.042	24 025	0.000	Variances				
11)	1.012	0.012	21.020	0.000	FACTOR	1.00	0.0	0.0	0 1.000
Thresho	lds				11101011	1100			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
X1\$1	-0.053	0.050	-1.068	0.285					
X2\$1	0.835	0.056	14.803	0.000	STANDARDI	ZED MO	DEL RES	ULTS	
X3\$1	1.029	0.060	17.032	0.000					
X4\$1	0.749	0.055	13.623	0.000	STDYX Stand	lardization	ı		
X5\$1	0.550	0.052	10.499	0.000	~ <i>Starte</i>				
X6\$1	0.718	0.055	13.174	0.000			Т	wo-Taile	d
X7\$1	0.426	0.051	8.320	0.000	E	stimate	S.E. Es	t/SE I	P-Value

Figure 2. (Continued).

6. Sample, Item Selection, and Pre-Statistical Harmonization

Data from N=3,948 students (n=1,892, 48% female, n=2,461, 62% Black), with an average sample size per the study of 790 students (min = 157, max = 1,884, SD=659) were analyzed. Based on prior research (Petras et al., 2004), we considered a total of 9 items measured along a 6-point Likert scale (1 = "almost never," 6 = "almost always") as comprising the aggressive-disruptive behavior subscale, including items, such as "*takes others' property*" and "*teases classmates*." In an effort to reduce sparseness in extreme responses, all items were collapsed into binary variables (see DiStefano et al., 2021). Endorsement rates of items across all studies ranged from 0.32 ("*harms property*") to 0.66 ("*breaks rules*"). See Table 1 for additional demographic characteristics.

7. Confirmatory Factor Analysis

As an initial step, confirmatory factor analyses (CFA) based on the nine binary items were conducted independently for each study. Parameters were estimated using a probit link function with weighted least squares with mean and variance adjusted chi-square fit statistics (Muthén, 1984). As an example, Figure 2a provides an annotated Mplus input file of the CFA model for Study 4. Here, the *useobservations* = *study_id* == 4; option of the *variable:* command is used to restrict the analyses to those from Study 4, while the

FACTOR	BY				
X1	0.830	0.025	33.434	0.000	
X2	0.957	0.015	64.619	0.000	
X3	0.954	0.017	55.551	0.000	
X4	0.924	0.016	56.190	0.000	
X5	0.919	0.016	55.836	0.000	
X6	0.892	0.020	43.848	0.000	
X7	0.844	0.025	34.448	0.000	
X8	0.747	0.032	23.036	0.000	
X9	0.839	0.026	32.827	0.000	
Thresholds					
X1\$1	-0.053	0.050	-1.068	0.285	
X2\$1	0.835	0.056	14.803	0.000	
X3\$1	1.029	0.060	17.032	0.000	
X4\$1	0.749	0.055	13.623	0.000	
X5\$1	0.550	0.052	10.499	0.000	
X6\$1	0.718	0.055	13.174	0.000	
X7\$1	0.426	0.051	8.320	0.000	
X8\$1	0.422	0.051	8.242	0.000	
X9\$1	0.301	0.050	5.965	0.000	
Variances					
FACTOF	R 1.00	0 0.0	00 999.0	00 999.0	000
R-SQUARI	E				
Observed	1		Two-T	ailed Re	sidual
Variable	Estimate	S.E.	Est./S.E.	P-Value	e Variance
X1	0.688	0.041	16.717	0.000	0.312
X2	0.915	0.028	32.310	0.000	0.085
X3	0.911	0.033	27.776	0.000	0.089
X4	0.854	0.030	28.095	0.000	0.146
X5	0.845	0.030	27.918	0.000	0.155
X6	0.795	0.036	21.924	0.000	0.205
X7	0.712	0.041	17.224	0.000	0.288
X8	0 559	0.049	11.518	0.000	0.441

0.043

0 704

16.413

0.000

0 2 9 6

X9 (Figure 2. (Continued).

measurement model is defined with the line Factor BY x1x9; in the model: command. Figure 2b provides the selected Mplus output of the same model. Note that in addition to probit parameterization, results are parameterized as IRT (i.e., item difficulty and discrimination) and standardized. Results of the Study 4 CFA model demonstrate that the model fit the data relatively well, with factor loadings ranging from .75 to .96 (RMSEA = .062, CFI = .994, TLI = .992, SRMR = .040). A final CFA was fit to all (pooled) observations simultaneously (by removing the useobservations option), with factor loadings ranging from .82 to .91 (RMSEA = .049, CFI = .996, TLI = .995, SRMR = .027).Overall, the CFA results demonstrate that a single factor model is an adequate model when fit to each student independently, as well as when fit to the pooled data. Having established our model, we move on to building a model for MNLFA.

8. MNLFA Model Building

After establishing a measurement model, it is important to follow a methodical approach to model building for

MNLFA. Guided by theory and prior findings, we focus on three moderators of aggressive-disruptive behaviors: sex, race, and study membership. Here, sex was a binary variable coded (0 = female, 1 = male), while the race was a binary variable coded (0 = Black, 1 = White). Multiple dummy coded indicator variables were created for Study 2 through Study 5 such that estimates were in reference to Study 1. This resulted in a total of six moderators. In what follows, we present an item-by-item testing approach for developing a final MNLFA model, as recommended by Curran et al. (2014) and Gottfredson et al. (2019) (see also Finch, 2005; Thissen, 2001). However, we note the possibility of different approaches and procedures that may be used to establish invariance resulting in equivalent measurement models (e.g., Vandenberg & Lance, 2000).

8.1. Baseline MNLFA Model

As a first step, we estimate the covariates' effects on the latent mean and latent variance, recording the log-likelihood value, as well as the estimated coefficients and associated pvalues for each covariate effect. This represents a baseline model, to which future models are compared. Figure 3a provides an annotated Mplus input file of the baseline MNLFA model. The statement Factor ON study_2 - study_5 sex race; in the model: command is used to allow the covariates to moderate the factor mean. This command corresponds to Equation (9). Allowing the covariates to moderate the factor variance requires additional steps. To avoid negative variance estimates, a log-linear constraint will be used with the covariates. This is first implemented using the con*straint* = *study_2* - *study_5 sex race*; option in the *variable*: command. Then, in the model: command, a label is referred to in parentheses following the variance estimate of the factor: Factor (factor_variance). Next, in the model constraint: command, new labels are given referencing the parameters of the moderators: new (f_study_2 f_study_3 f_study_4 f_study_5 f_sex f_race). Finally, the factor variance moderation is implemented using the following command: $factor_variance = EXP(f_study_2^*study_2 + f_study_3^*study_$ $3 + f_{study}_4 + f_{study}_5 + f_{sex} + f_{sex}$ race*race). This command corresponds to Equation (10). Similarly, Figure 3b provides select Mplus output of the baseline MNLFA model. Examining the model results, the covariate moderation of the factor mean is given in the FACTOR ON subsection, while the covariate moderation of the factor variance is given in the New/Additional Parameters subsection. Here it can be seen that all six covariates were significant moderators of the factor mean, while all covariates except for *study_2* were significant moderators of the factor variance.

8.2. Item Specific MNLFA Models

Next, leaving each of the covariate effects on the latent mean and variance (regardless of significance), we explore item moderation by allowing the covariates to additionally moderate the item intercept and factor loading of the *first*

(a)	(b)				
title: Baseline MNLFA model	MODEL RESU	ULTS			
data: file = data_mnlfa.dat;	Es	stimate S.I	Two-T E. Est./S.E.	ailed P-Valı	ue
<pre>variable: names = id study_id study_1-study_5 sex race x1-x9 hs; usevariables =study_2 - study_5 sex race x1-x9; categorical = x1-x9; missing = all (-999); constraint = study_2 - study_5 sex race; ! to be used as moderators of factor variance analysis: ! estimator = wlsmy; cannot be used with certain model constraints estimator = mlsr ! use maximum likelihood with robust standard errors instead</pre>	FACTOR BY X1 X2 X3 X4 X5 X6 X6 X7 X8	Y 1.000 0.0 1.182 0.0 1.922 0.1 1.816 0.1 1.583 0.1 1.673 0.1 1.462 0.0 1.171 0.0	000 999.0 080 14.83 154 12.51 125 14.49 101 15.70 108 15.48 095 15.39 075 15.57	00 9999. 6 0.00 3 0.00 06 0.00 02 0.00 03 0.00 04 0.00 05 0.00 06 0.00 06 0.00 07 0.00	.000 20 20 20 20 20 20 00 00
link = logit; processors = 1;	X9	1.404 0.0)87 16.17	6 0.00	00
model: Factor BY x1-x9; ! measurement model	FACTOR C STUDY_2 STUDY_3 STUDY 4	DN -1.069 -1.268 -2.605	0.165 0.103 - 0.164 -	·6.489 12.292 15.846	$0.000 \\ 0.000 \\ 0.000$
! allow covariates to moderate factor mean (linear function) Factor ON study_2 - study_5 sex race; [Factor@0]; ! constraint factor mean to zero to identify model	STUDY_5 SEX RACE	-1.210 0.658 -0.842	0.224 0.078 0.094	·5.400 8.443 -8.979	$\begin{array}{c} 0.000\\ 0.000\\ 0.000\end{array}$
! factor variance implicitly set to one to identify model Factor (factor_variance); ! estimate factor variance and define new label	Intercepts FACTOR	0.000	0.000 9	99.000	999.000
<pre>model constraint: new (f_study_2 f_study_3 f_study_4 f_study_5 f_sex f_race); ! label parameters of moderators ! allow covariates to moderate factor variance ! use log-linear function to avoid negative variance factor_variance = EXP(f_study_2*study_2 + f_study_3*study_3 + f_study_4*study_4 + f_study_5*study_5 + f_sex*sex + f_race*race);</pre>	Thresholds X1\$1 X2\$1 X3\$1 X4\$1 X5\$1 X6\$1	-2.166 0 -0.075 0 -0.120 0 -1.016 0 -1.088 0 -1.280 0	.120 -18.0 .112 -0.6 .189 -0.6 .173 -5.8 .153 -7.1 0.162 -7.8	006 0. 64 0. 32 0. 83 0. 04 0. 84 0.	000 507 527 000 000 000
output: sampstat; svalues; tech1;	X7\$1 X8\$1 X9\$1 Residual Varia FACTOR	-1.709 0 -2.218 0 -2.108 0 ances 999.000	.154 -11. .139 -15.9 .152 -13.8	101 0. 907 0. 382 0.	000 000 000 999.000
	New/Additiona F_STUDY F_STUDY F_STUDY F_STUDY F_SEX F_RACE	al Parameters 2 0.185 3 1.002 4 1.194 5 1.444 0.475 0.535	5 0.180 2 0.101 4 0.118 4 0.210 0.080 0.100	1.028 9.889 10.104 6.872 5.925 5.347	0.304 0.000 0.000 0.000 0.000 0.000

Figure 3. (a) Mplus input file of baseline MNLFA model. (b) Select Mplus output file of baseline MNLFA model.

item only (i.e., "breaks rules"). Again, model estimates and p-values are recorded. Figure 4a provides an annotated Mplus input file of the first item MNLFA model. In addition to the moderation of factor parameters, moderation of the item intercept is implemented using the statement x1ON study_2 - study_5 sex race; in the model: command. This command corresponds to Equation (12). Allowing the covariates to moderate the item loading requires model constraints. First, a label is referred to in parentheses following the loading estimate of the first item: Factor BY x1 (x1_loading); in the model: command. Next, in the model constraint: command, new labels are given referencing the parameters of the item moderators: new (x1_int x1_study_2 x1_study_3 x1_study_4 x1_study_5 x1_sex x1_race). Finally, moderation of the first item loading is implemented using the following command: $x1_loading = x1_int + x1_study_$ 2^* study_2 + x1_study_3^*study_3 + x1_study_4*study_4 + x1 $_study_5^*study_5 + x1_sex^*sex + x1_race^*race$. This command corresponds to Equation (13). Similarly, Figure 4b

provides select Mplus output of the first item MNLFA model. Examining the model results, the covariate moderation of the item intercept is given in the *X1 ON* subsection, while the covariate moderation of the item loading is given in the *New/Additional Parameters* subsection. Here it can be seen that no covariates were significant moderators of the item intercept, while *study_4* and *sex* were significant moderators of the item loading.

Now, a likelihood ratio test (LRT) is conducted, comparing the change in model fit between the current model (*breaks rules* item and factor moderation), and the baseline model (factor moderation only). For example, the baseline model has 29 parameters, a log-likelihood of -13,603.1, and a scaling factor of 1.050; the *breaks rules* model has 42 parameters, a log-likelihood of -13,467.8, and a scaling factor of 1.022. Thus, the chi-square difference test based on log-likelihood values with a scaling factor obtained from maximum likelihood estimates with robust standard errors

(a)	(b)				
title: Item 1 MNLFA model	MODEL RESU	ULTS	Т		
	Fe	timoto	IW SE Ect/	O-Lailed	Value
data:	La	stillate	5.L. LSt./	5.L. 1-	value
file = data_mnlfa.dat;	FACTOR BY	Y			
voriable	X1	999.000	0.000	999.000	999.000
variable. names = id study id study 1-study 5 sex race $x_1 x_9$ hs:	X2	1.917	0.131 1	4.630	0.000
usevariables = study 2 - study 5 sex race $x_1 - x_2$ is,	X3	3.282	0.265 1	2.372	0.000
categorical = $x1-x9$:	X4	3.000	0.218 1	3.755	0.000
missing = all (-999);	A3 V6	2.590	0.174 1	4.940	0.000
constraint = study_2 - study_5 sex race;	А0 Х7	2.772	0.167 1	4.800 4.711	0.000
	XXX	1 997	0.135 1	4 793	0.000
analysis:	X9	2.388	0.165 1	4.497	0.000
estimator = mlr;		2.000			0.000
link = logit;	FACTOR C	DN			
processors = 1;	STUDY_2	-0.65	4 0.092	2 -7.130	0.000 0
madalı	STUDY_3	-0.84	8 0.065	5 -13.09	2 0.000
Factor BV v1 v0	STUDY_4	-1.70	1 0.113	3 -15.01	9 0.000
ractor D1 x1-x2,	STUDY_5	-0.87	2 0.138	-6.314	0.000
allow covariates to moderate factor mean (linear function)	SEX	0.40	3 0.047	8.556	0.000
Factor ON study 2 - study 5 sex race:	RACE	-0.576	6 0.058	-9.93	0.000
[Factor@0];	V1 ON				
	AI UN STUDV 2	0.80	0 1.030	0.873	0.383
Factor (factor_variance);	STUDY 3	-0.89	3 0.50	7 -1.387	0.385 0.166
	STUDY 4	-0.79	4 0.579	-1370	0.100
! allow covariates to moderate item 1 intercept	STUDY 5	-0.71	4 0.908	-0.787	0.431
x1 ON study_2 - study_5 sex race;	SEX	-0.28	2 0.312	2 -0.905	5 0.365
Factor BY x1 (x1_loading); ! label used for moderation of item 1 factor loading	RACE	0.66	8 0.428	3 1.559	0.119
model constraints					
model constraint.	Intercepts				
new $(1 \text{ study } 2 \text{ 1 } \text{ study } 5 \text{ 1 } \text{ study } 4 \text{ 1 } \text{ study } 5 \text{ 1 } \text{ sex x1 } \text{ race})$	FACTOR	0.000	0.000	999.00	0 999.000
new (x1_int x1_study_2 x1_study_5 x1_study_4 x1_study_5 x1_sex x1_idee),					
allow covariates to moderate factor variance	Thresholds	4.000	0.565	7.051	0.000
! use log-linear function to avoid negative variance	X1\$1 V2\$1	-4.098	0.303	-7.251	0.000
$factor_variance = EXP(f_study_2*study_2 + f_study_3*study_3 +$	X2\$1	-0.278	0.122	-2.273	0.025
f_study_4*study_4 + f_study_5*study_5 + f_sex*sex + f_race*race);	X4\$1	-1 380	0.218	-6.962	0.000
	X5\$1	-1.389	0.171	-8.143	0.000
! allow covariates to moderate factor loading of item 1	X6\$1	-1.617	0.184	-8.804	0.000
x_1 loading = x_1 int + x_1 study 2*study 2 + x_1 study 3*study 3 +	X7\$1	-1.998	0.174	-11.449	0.000
$x_1_study_4$ *study_4 + $x_1_study_5$ *study_5 + x_1_sex *sex + x_1_race *race;	X8\$1	-2.491	0.160	-15.559	0.000
	X9\$1	-2.432	0.178	-13.635	0.000
	Desident Veri				
	FACTOR	999 00	0 0 0 0 0 0	999 000	000 999 000
	meron	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	New/Additiona	al Paramete	rs		
	F_STUDY_	2 -0.4	70 0.1	88 -2.50	0.012
	F_STUDY_	3 0.0	73 0.10	0.66	6 0.505
	F_STUDY_	4 0.4	29 0.13	36 3.14	7 0.002
	F_STUDY_	J U.S	80 0.22	25 2.00 82 2.19	5 0.009 7 0.020
	F RACE	0.1	24 0.0	91 136	3 0 173
	X_INT	3.5	05 0.4	84 7.24	8 0.000
	X_STUDY_	_2 -0.1	06 0.89	-0.11	9 0.905
	X_STUDY_	_3 -0.4	37 0.40	52 -0.94	7 0.344
	X_STUDY_	_4 -1.2	241 0.48	36 -2.55	5 0.011
	X_STUDY_	_> -1.1	32 0.6 13 0.20	19 -1.66	/ 0.095
	A SEA	-0.0	ub 0.23	vz -2.30	7 0.010

Figure 4. (a) Mplus input file of item 1 "breaks rules" MNLFA model. (b) Select Mplus output file of item 1 "breaks rules" MNLFA model.

can be computed as:

$$LRT = \frac{-2 \times (-13,603.1 - -13,467.8)}{\left[(29 \times 1.050) - (42 \times 1.022)\right] \div (29 - 42)} = 282.01$$
(14)

As a chi-square distribution of 282.01 with 42 - 29 = 13 degrees of freedom results in a *p*-value <.05, we conclude the *breaks rules* model fits the data significantly better than

the baseline model and thus will include any item-specific covariate effects with significant *p*-values in future models. Next, the covariate effects for the first item are removed but are now added for the *second item only* (i.e., *"harms property"*). Again, with model estimates and *p*-values recorded, an LRT is conducted comparing the current model (*harms property* item and factor moderation) to the baseline model (factor moderation only). This process is continued for each item model individually. All models used maximum

0.215 0.330

0.651 0.515

X_RACE

					Factor mean		Factor variance		Item intercept		Item loading	
Model	Covariate	Parameters	LL	SF	Est	p	Est	p	Est	p	Est	р
Baseline		29	-13,603.1	1.050								
	Study 2				-1.07	<.01	0.19	.30				
	Study 3				-1.2/	<.01	1.00	<.01				
	Study 5				-2.01	< 01	1.19	<.01				
	Sex				0.66	<.01	0.48	<.01 <.01				
	Race				-0.84	<.01	0.54	<.01				
Breaks rules		42	-13,467.8	1.022								
	Study 2				-0.65	<.01	-0.47	.01	-0.90	.38	-0.11	.91
	Study 3				-0.85	<.01	0.07	.51	-0.70	.17	-0.44	.34
	Study 4				-1./0	<.01	0.43	<.01	-0.79	.1/	-1.24	.01
	Study 5				-0.87	<.01	0.58	.01	-0.71	.43	-1.13	.10
	Bace				-0.40	< 01	0.18	.03	0.67	.37	0.01	.01
Harms property	hace	41	-13,517.2	1.046	0.50	2.01	0.12		0.07		0.22	.52
· · · · · · · · · · · · · · · · · · ·	Study 2				-1.11	<.01	0.15	.40	1.30	.03	1.43	.36
	Study 3				-1.37	<.01	1.05	<.01	1.13	<.01	-1.48	<.01
	Study 4				-2.65	<.01	1.14	<.01	1.72	<.01	-0.37	.39
	Study 5				-1.26	<.01	1.40	<.01	0.93	.01	-0.20	.76
	Sex				0.65	<.01	0.48	<.01	0.04	./6	-0.20	.08
Brooks things	касе	41	13 504 4	0 080	-0.84	<.01	0.54	<.01	0.08	.07	0.14	.29
bleaks tillings	Study 2	41	-13,394.4	0.900	-1.05	< 01	0.23	21	0.55	23	-0.03	97
	Study 2 Study 3				-1.28	<.01	1.00	<.01	1.25	<.01	0.56	.19
	Study 4				-2.60	<.01	1.22	<.01	0.72	.02	0.74	.13
	Study 5				-1.20	<.01	1.47	<.01	0.96	.01	0.50	<.01
	Sex				0.65	<.01	0.48	<.01	0.16	.35	-0.31	.21
	Race				-0.84	<.01	0.52	<.01	0.23	.44	0.81	.05
Takes property	Cauda 2	41	-13,577.4	1.039	1.00	< 01	0.21	26	0.22	50	0.10	(0
	Study 2				- 1.09	<.01	0.21	.20	-0.23	.58	-0.18	.08
	Study 3 Study 4				-7.66	< 01	1 18	< 01	0.42	17	-0.10 -0.27	.58
	Study 5				-1.29	<.01	1.39	<.01	1.38	.03	0.48	.55
	Sex				0.67	<.01	0.50	<.01	-0.30	.10	-0.23	.23
	Race				-0.83	<.01	0.56	<.01	-0.23	.29	-0.11	.64
Fights		41	-13,520.6	1.032								
	Study 2				-1.04	<.01	0.15	.43	1.24	.22	0.83	.30
	Study 3				-1.16	<.01	1.08	<.01	-1.59	<.01	-0.62	.01
	Study 5				-2.50	< 01	1.17	<.01	-0.25	.54	_0.07	.04 22
	Sex				0.62	<.01	0.48	<.01 <.01	0.41	.01	-0.23	.10
	Race				-0.83	<.01	0.50	<.01	0.10	.63	0.11	.54
Lies		41	-13,571.0	1.025								
	Study 2				-1.03	<.01	0.25	.17	-0.99	.01	-0.55	.21
	Study 3				-1.30	<.01	1.05	<.01	-0.32	.15	-0.96	<.01
	Study 4				-2.63	<.01	1.24	<.01	-0.59	.05	-0.89	.01
	Study 5				-1.33	<.01	1.55	<.01	0.41	.40	- 1.31	<.01
	Bace				-0.09	< 01	0.48	< 01	-0.40 -0.11	.03	-0.21 -0.41	.10
Yells at others	hace	41	-13,567.4	1.033	0.07	2.01	0.51	1.01	0.11	.57	0.11	.01
	Study 2				-0.99	<.01	0.08	.67	2.35	.17	2.59	.10
	Study 3				-1.23	<.01	1.02	<.01	-0.97	<.01	-0.65	<.01
	Study 4				-2.62	<.01	1.23	<.01	-0.75	.03	-0.73	<.01
	Study 5				-1.14	<.01	1.44	<.01	-1.17	.01	-0.44	.26
	Sex				0.70	<.01	0.47	<.01	-0.77	<.01	-0.17	.19
Stubborn	Race	41	_13 507 2	1 037	-0.04	<.01	0.54	<.01	-0.51	.14	-0.29	.04
Stubbolli	Study 2	41	-13,507.2	1.057	-1.27	< .01	0.49	.01	1.06	.23	-0.44	.24
	Study 2 Study 3				-1.26	<.01	1.05	<.01	-0.90	.01	-0.64	.01
	Study 4				-2.53	<.01	1.22	<.01	-2.25	<.01	-0.97	<.01
	Study 5				-1.13	<.01	1.51	<.01	-2.22	<.01	-1.04	<.01
	Sex				0.71	<.01	0.44	<.01	-0.77	<.01	-0.11	.28
Tanana atla	Race	4.1	12 574 5	1.027	-0.86	<.01	0.56	<.01	0.01	.97	-0.16	.18
reases others	Study 2	41	-13,576.5	1.036	1 20	< 01	0 2 2	00	0.60	72	0.40	22
	Study 2 Study 3				-1.20 -1.27	< 01	1.52	.00 < 01	-0.69	.27	-0.40	.23 02
	Study 4				-2.65	<.01	1.24	<.01	-0.63	.02	-0.61	.02
	Study 5				-1.16	<.01	1.45	<.01	-1.43	.00	-0.67	.03
	Sex				0.66	<.01	0.51	<.01	-0.36	.09	-0.35	.01
	Race				-0.82	<.01	0.51	<.01	-0.58	.01	-0.18	.19

Table 2. Examining DIF in factor and item parameters using a sequential model building approach.

Note. LL: log-likelihood; SF: scaling factor used in likelihood ratio test; significant item moderation effects are bolded.

likelihood estimation with robust standard errors (i.e., sandwich estimator) and chi-square test statistic (Muthén & Muthén, 2017). See Table 2 for the number of parameters, log-likelihood, and scaling factor for each model, as well as parameter estimates and p-values for the factor mean, factor variance, item intercept, and factor loading for each model.

If any item-moderation model results in a non-significant LRT, no covariate effects are estimated for that item intercept or factor loading, even if the *p*-values for a given effect are significant. If an item-moderation model does result in a significant LRT, as is the case for all item models examined in Table 2, only item-specific covariate effects with significant *p*-values are kept. For example, examining Table 2, it can be seen that for the item *lies*, the covariate *sex* significantly moderates the item intercept but not the item loading, while the covariate *race* significantly moderates the item *lies*, the moderated effect of item *lies* is removed, while the moderated effect of item intercepts on *race* is removed.

8.3. Final MNLFA Models

After removing any covariate effects for either of the two reasons described above, a new, penultimate model is estimated, in which all covariates moderate the factor mean and variance, while only item-specific covariate effects with

significant *p*-values are kept (as described above). An annotated Mplus input file for the penultimate model is presented in Figure 5a. Again, only item-specific moderation effects presented in Table 2 are kept for this next-to-last model. Likewise, Figure 5b provides the select Mplus output of the next-to-last MNLFA model. Examining the model results, the covariate moderation of certain item intercepts is presented in the X2 ON, X3 ON, etc. subsections. For example, for item 2 "Harms property," it can be seen that *study_3* and *study_4* were significant moderators of the item intercept. Likewise, covariate moderation of certain item loadings is presented in the *New/Additional Parameters* subsection. For example, for item 6 "Lies," it can be seen that only *study_5* and *race* were significant moderators of the loading.

After examining the output from the next-to-last MNLFA model, all non-significant item moderation effects are discarded, leaving only significant moderators of item intercepts and loadings (in addition to always keeping moderation of factor parameters regardless of significance). This last pruning effort results in the final MNLFA model. Again, all models used maximum likelihood estimation with robust standard errors, with factor scores estimated using the expected *a posteriori* (EAP) method (i.e., mean of the posterior distribution) and saved for each individual. See Tables 3 and 4 for parameter estimates from the final MNLFA model.

(a)

title: Penultimate MNLFA model

data: file = data_mnlfa.dat;

variable:

names = id study_id study_1-study_5 sex race x1-x9 hs; usevariables =study_2 - study_5 sex race x1-x9; categorical = x1-x9; missing = all (-999); constraint = study_2 - study_5 sex race;

analysis: estimator = mlr; link = logit; processors = 1;

model:

Factor BY x1*1 (x1_loading); ! label for moderation of item 1 factor loading Factor BY x2*1 (x2_loading); ! label for moderation of item 2 factor loading Factor BY x3*1 (x3_loading); ! label for moderation of item 3 factor loading Factor BY x4*1; ! no label needed, as no sig. moderation of item 4 factor loading Factor BY x6*1 (x5_loading); ! label for moderation of item 4 factor loading Factor BY x6*1 (x6_loading); ! label for moderation of item 6 factor loading Factor BY x6*1 (x6_loading); ! label for moderation of item 7 factor loading Factor BY x6*1 (x8_loading); ! label for moderation of item 8 factor loading Factor BY x8*1 (x8_loading); ! label for moderation of item 9 factor loading Factor BY x9*1 (x9_loading); ! label for moderation of item 9 factor loading

! allow covariates to moderate factor mean (linear function) Factor ON study_2 - study_5 sex race; [Factor@0];

Factor (factor_variance);

! moderation of item intercepts (previously determined from Table 2) ! no moderation of item x1 intercept x2 ON study_2-study_5; x3 ON study_3-study_5; x4 ON study_3 study_5; x5 ON study_2 sex; x6 ON study_2 sex; x7 ON study_3-study_5 sex; x8 ON study_3-study_5 sex; x9 ON study_3-study_5 race; model constraint: new (f_study_2 f_study_3 f_study_4 f_study_5 f_sex f_race);

! intercepts for loading moderation equation new (int1 int2 int3 int5 int6 int7 int8 int9); ! no sig. moderators of x4 loading

new (x1_study_4 x1_sex); new (x2_study_3); new (x3_study_5); ! no loading moderation of x4 new (x5_study_3); new (x6_study_3 x6_study_4 x6_study_5 x6_race); new (x7_study_3 x6_study_4 x7_race); new (x8_study_3 x8_study_4 x8_study_5); new (x8_study_3 x8_study_4 x9_study_5 x9_sex);

! allow covariates to moderate factor variance - use log-linear function to avoid negative variance factor_variance = EXP(f_study_2*study_2 + f_study_3*study_3 + f_study_4*study_4 + f_study_5*study_5 + f_sex*sex + f_race*race);

```
! allow covariates to moderate factor loadings

x1_loading = int1 + x1_study_4*study_4 + x1_sex*sex;

x2_loading = int2 + x2_study_3*study_3;

x3_loading = int3 + x3_study_5*study_5;

! no loading moderation of x4

x5_loading = int5 + x5_study_3*study_3;

x6_loading = int6 + x6_study_3*study_3 + x6_study_4*study_4 +

x6_study_5*study_5 + x6_race*race;

x7_loading = int7 + x7_study_3*study_3 + x7_study_4*study_4 +

x7_race*race;

x8_loading = int8 + x8_study_3*study_3 + x8_study_4*study_4 +

x8_study_5*study_5;

x9_loading = int9 + x9_study_3*study_3 +

x9_study_4*study_4 + x9_study_5*study_3 +

x9_study_4*study_4 + x9_study_5*study_5 + x9_sex*sex;
```

0.000 0.856 0.023 0.076 0.815 0.000 0.021 0.038 0.058 0.730 0.610 0.072 0.251 0.056

1	L)	
(D	
•	~ 1	

MODEL RI	ESULTS					,	Thresholds					
		1	Гwo-Taile	ed			X1\$1	-3.359	0.2	29 -14.	.672 0.	000
	Estimate	S.E. Es	st./S.E. 1	P-Val	ue		X2\$1	0.636	0.2	18 2.9	916 0.	004
							X3\$1	0.119	0.40	02 0.2	296 0.	767
FACTOR	BY						X4\$1	-0.841	0.2	07 -4.0	072 0.	000
X1	999.000	0.000	999.000) 99	9.000		X5\$1	-1.746	0.2	48 -7.0	043 0.	000
X2	999.000	0.000	999.000) 99	9.000		X6\$1	-1.704	0.2	14 -7.	955 0.	000
X3	999.000	0.000	999.000) 99	9.000		X7\$1	-2.716	0.2	71 -10.	.018 0.	000
X4	3.284	0.246	13.374	0.0	000		X8\$1	-3.558	0.2	65 -13.	.419 0.	000
X5	999.000	0.000	999.000) 99	9 000		X9\$1	-2.440	0.2	02 -12.	.058 0.	000
X6	999.000	0.000	999.000	00	9.000							
X7	999.000	0.000	000 000	00	0.000]	Residual Varia	nces				
X9	000.000	0.000	000.000	00	0.000		FACTOR	999.0	00	0.000	999.000	999.000
X0	999.000	0.000	000.000) <i>99</i>	0.000							
A9	999.000	0.000	333.000	, ,,	9.000	N	New/Additional	Paramet	ers			
EACTOR	ON						F STUDY 2	-0.	270	0.179	-1.512	0.131
STUDY	2 04	52 0.0	06 67	160	0.000		F STUDY 3	0.	022	0.129	0.170	0.865
STUDY_	_2 -0.0	0.0	190 -0./	702	0.000		F STUDY 4	0	267	0.169	1 584	0.113
STUDY_	_5 -0.0	528 U.U	10 -11.	793	0.000		F STUDY 5	0	336	0.243	1 381	0.167
STUDY_	_4 -1.4	485 0.1	10 -13.	510	0.000		F SEX	0	066	0.088	0.740	0.454
STUDY_	_5 -0.7	/22 0.1	30 -5.5	549	0.000		F PACE	0.	100	0.000	1.076	0.282
SEX	0.4	436 0.0	49 8.9	40	0.000		I_KACL	0.	100	0.095	12 401	0.282
RACE	-0.:	519 0.0)53 -9.7	708	0.000		INT I	<i>3</i> .	450	0.227	10.602	0.000
							IN 12 DITT2	3.	438	0.326	10.603	0.000
X2 OI	N						IN13 DITT5	3.4	4//	0.304	11.429	0.000
STUDY_	_2 0.5	0.3	36 1.5	27	0.127		IN15	3.4	261	0.291	11.215	0.000
STUDY_	_3 1.1	36 0.1	92 5.9	04	0.000		IN16	3.4	172	0.344	10.094	0.000
STUDY	4 1.4	71 0.2	59 5.6	87	0.000		INT7	3.	181	0.321	9.925	0.000
STUDY	5 0.8	310 0.4	38 1.8	47	0.065		INT8	2.	231	0.239	9.349	0.000
~							INT9	2.	214	0.209	10.575	0.000
X3 01	N						X1_STUDY_	_4 -0.	.519	0.179	-2.897	0.004
STUDY	3 07	52 03	76 2.0	02	0.045		X1_SEX	-0.	300	0.124	-2.408	0.016
STUDY	0.,	52 0.5 054 0.4	02 01	36	0.802		X2_STUDY_	_3 -1.	.708	0.311	-5.493	0.000
STUDY	_ - 0.0	07 0.7	20 0.1	70	0.672		X3_STUDY_	5 -0	.144	0.794	-0.182	0.856
STUDI_	_5 0.5	0.5	28 0.5	12	0.307		X5_STUDY	3 -0	.682	0.301	-2.268	0.023
V/ O	NT						X6 STUDY	3 -0.	.489	0.276	-1.773	0.076
A4 UI	2 00	00 01	70 45	26	0.000		X6 STUDY	4 0.	.087	0.372	0.234	0.815
STUDY_	_3 0.8	70 0.1	79 4.3	20	0.000		X6 STUDY	5 -1	.265	0.358	-3.532	0.000
STUDY_	_5 0.6	0/8 0.3	35 2.0	25	0.043		X6 RACE	-0	408	0 177	-2.300	0.021
	T						X7 STUDY	3 -0) 667	0 322	2.070	0.038
X5 01	N						X7 STUDY	4 -0	777	0.410	-1.895	0.058
STUDY_	_3 -1.1	0.2	-5.3	399	0.000		X7 RACE	0	053	0.153	0 345	0.730
SEX	0.4	451 0.1	31 3.4	-34	0.001		X9_KILDV	3 0	127	0.155	0.545	0.750
							X8_STUDI_	_5 0.	520	0.209	0.511	0.010
X6 OI	N						Xº STUDY	_4 -0 5 0) 460	0.289	11/90	0.072
STUDY_	_2 -0.8	818 0.2	288 -2.8	344	0.004		X0_STUDY_		1.409	0.408	-1.148	0.231
							X9_SIUDY_	_3 0	0.501	0.262	1.914	0.056
OFW	0	2(0 0	122 1	0.00	0.050		X9_STUDY	_4 0	0.376	0.218	1./26	0.084
SEX	-0.	260 0.	133 -1.	960	0.050		X9_STUDY_	_5 0	0.061	0.533	0.115	0.909
	A T						X9_SEX	-0	0.036	0.131	-0.274	0.784
X/ 0	N a											
STUDY	_3 -0.	613 0.2	265 -2.	312	0.021							
STUDY	_4 -0.	649 0.3	346 -1.	876	0.061							
STUDY	_5 -0.	795 0.3	363 -2.	189	0.029							
SEX	-0.	561 0.	130 -4.	310	0.000							
X8 O	N											
STUDY	_3 -0.	489 0.2	293 -1.	668	0.095							
STUDY	_4 -2.	055 0.3	306 -6.	721	0.000							
STUDY	_5 -1.	965 0.4	413 -4.	762	0.000							
SEX	-0.	681 0.	128 -5.	302	0.000							
X9 O	N											
STUDY	_3 0.	062 0.2	258 0.2	240	0.811							
STUDY	_5 -0.	984 0.4	468 -2.	102	0.036							
RACE	-0.	283 0.	132 -2.	146	0.032							
	0.			-								
Intercepts												
·												

Figure 5. (Continued).

9. Incorporating Factor Scores into Subsequent **Model Estimation**

FACTOR

By allowing for covariate moderation of both item and factor parameters, the final MNLFA model provides estimates of a construct that has been scaled commensurately across

0.000 0.000 999.000 999.000

studies. While it is possible to estimate the measurement model of the MNLFA within a more complex structural equation model, for example, this may not be feasible in practice due to the complexity of the model. As suggested by Bauer & Hussong (2009) and Curran et al. (2014), we

used estimated factor scores for each individual as a predictor of high school graduation (0 = did not graduate, 1 = did graduate). We also included sex, race, and dummy indicators of study membership as predictors in the outcome model. This is informed by simulation findings by Curran et al. (2016, 2018), who found that including covariates from the MNLFA model as predictors in a subsequent outcome model resulted in little to no bias, but importantly, failure to include covariates that are correlated with the latent factor in either model resulted in substantial bias. We wish to emphasize that the outcome model presented here is provided as an illustration and that in practice, researchers should include covariates informed by existing literature and substantive knowledge. Results from the logistic regression model (see Table 5) indicated the main effect of

Table 3. Final MNLFA model examining covariate effects on factor mean and variance.

Covariate effect	Estimate	SE	p	
Factor mean				
Study 2	-0.62	0.09	<.01	
Study 3	-0.87	0.07	<.01	
Study 4	-1.51	0.10	<.01	
Study 5	-0.67	0.13	<.01	
Sex	0.44	0.05	<.01	
Race	-0.54	0.06	<.01	
Factor variance				
Study 2	-0.25	0.17	.15	
Study 3	0.17	0.12	.13	
Study 4	0.24	0.13	.07	
Study 5	0.40	0.21	.06	
Sex	0.07	0.08	.41	
Race	0.12	0.09	.20	

Note. Study 1 represents the reference group; Sex is coded (0 = female, 1 = male); Race is coded (0 = Black, 1 = White).

baseline aggressive-disruptive behavior was significantly, negatively related to high school graduation (Odds Ratio = 0.77, p < .001). Sex was a significant covariate (OR = 0.76, p = .002), with males being less likely to complete high school than females. There were also significant differences across studies; students in Study 3 were more likely to graduate high school than those in Study 1 (OR = 3.40, p < .001), while students in Study 4 were less likely (OR = 0.05, p < .001).

10. Discussion

This article provides an overview of MNLFA, demonstrating its flexibility for use within IDA where the goal is to develop a construct that has properly scaled across studies. We offer a tutorial on implementing this model in practice, demonstrating the steps involved in the admittedly complex model-building process of developing an appropriate MNLFA model. Further, to allow applied researchers to more easily implement and modify these models, all empirical data and code used for analyses are provided at: https:// github.com/jmk7cj/SEM-mnlfa. This is in addition to the

Table 5. Logistic regression results of high school completion.

-	-		
	Odds Ratio	95% C.I.	р
Study 2	1.52	[0.97, 2.39]	.065
Study 3	0.07	[0.86, 1.32]	.546
Study 4	3.40	[2.36, 4.89]	<.001
Study 5	0.05	[0.03, 0.08]	<.001
Male	0.76	[0.63, 0.91]	.002
White	1.19	[0.97, 1.46]	.091
Factor	0.77	[0.71, 0.84]	<.001

Note. Intercept = 1.14 logits (SE = 0.11).

Table 4. Final MNLFA model examining covariate effects on item intercepts and factor loadings.

		Intercept		Loading			
Covariate effect	Estimate	SE	p	Estimate	SE	p	
1. Breaks rules	-3.33	0.21	<.01	2.91	0.21	<.01	
Study 4	-	-	-	-0.43	0.12	<.01	
Sex	-	-	-	-0.34	0.10	<.01	
2. Harms property	0.50	0.21	.02	3.36	0.31	<.01	
Study 3	0.98	0.18	<.01	-1.73	0.30	<.01	
Study 4	1.43	0.22	<.01	_	-	-	
3. Breaks things	0.06	0.24	.82	3.29	0.27	<.01	
Study 3	0.66	0.20	<.01	_	-	-	
4. Takes property	-0.84	0.20	<.01	3.13	0.22	<.01	
Study 3	0.81	0.15	<.01	_	_	-	
Study 5	0.43	0.28	.12	-	-	-	
5. Fights	-1.71	0.25	<.01	3.19	0.27	<.01	
Study 3	-1.21	0.21	<.01	-0.79	0.27	<.01	
Sex	0.20	0.12	<.01	-	-	-	
6. Lies	-1.54	0.19	<.01	2.98	0.21	<.01	
Study 2	-1.05	0.25	<.01				
Study 5	-	-	-	-0.77	0.27	<.01	
Race	-	-	-	-0.38	0.17	.02	
7. Yells at others	-2.53	0.23	<.01	2.88	0.23	<.01	
Study 3	-0.48	0.21	.02	-0.54	0.23	.02	
Study 5	-0.93	0.30	<.01	_	_	-	
Sex	-0.52	0.12	<.01	-	-	-	
8. Stubborn	-3.04	0.18	<.01	2.09	0.15	<.01	
Study 4	-1.15	0.14	<.01	-	-	-	
Study 5	-1.39	0.27	<.01	-	-	-	
Sex	-0.60	0.12	<.01	-	-	-	
9. Teases others	-2.45	0.18	<.01	2.46	0.17	<.01	
Study 5	-1.01	0.29	<.01	-	_	_	
Race	-0.18	0.12	.13	-	_	_	

By combining raw data pooled across five separate prevention trials, we were likely able to produce findings that are more robust than any single study may have found. This was achieved through a larger overall sample size, increased frequencies of low base-rate behaviors (e.g., item "*breaks things*"), and the ability to account for measurement invariance or differential item functioning by allowing multiple covariates to simultaneously moderate item and factor parameters. As data repositories and open-source sharing of registered studies continue to grow in popularity (e.g., Registry of Efficacy and Effectiveness Studies), there is a rapid increase in the need for appropriate, advanced methodological tools. It is our hope this paper provides a tutorial on the model building process of MNLFA for IDA.

Acknowledgments

We thank Veronica Cole and the reviewers for their helpful comments on earlier versions of this manuscript.

Funding

This work was supported by the National Institute of Mental Health (1R01MH122214-01).

ORCID

Joseph M. Kush (b) http://orcid.org/0000-0003-0183-494X Katherine E. Masyn (b) http://orcid.org/0000-0001-5337-1137 Masoumeh Amin-Esmaeili (b) http://orcid.org/0000-0002-3888-3254 Ryoko Susukida (b) http://orcid.org/0000-0003-0444-5368 Holly C. Wilcox (b) http://orcid.org/0000-0003-2624-0654 Rashelle J. Musci (b) http://orcid.org/0000-0001-7267-5822

References

- Bauer, D. J. (2017). A more general model for testing measurement invariance and differential item functioning. *Psychological Methods*, 22, 507–526. https://doi.org/10.1037/met0000077
- Bauer, D. J., Belzak, W. C. M., & Cole, V. T. (2020). Simplifying the assessment of measurement invariance over multiple background variables: Using regularized moderated nonlinear factor analysis to detect differential item functioning. *Structural Equation Modeling: A Multidisciplinary Journal*, 27, 43–55. https://doi.org/10.1080/ 10705511.2019.1642754
- Bauer, D. J., & Hussong, A. M. (2009). Psychometric approaches for developing commensurate measures across independent studies: Traditional and new models. *Psychological Methods*, 14, 101–125. https://doi.org/10.1037/a0017642
- Belzak, W. C. (2020). Testing differential item functioning in small samples. *Multivariate Behavioral Research*, 55, 722–747. https://doi. org/10.1080/00273171.2019.1671162
- Birnbaum, A. L. (1968). Some latent trait models and their use in inferring an examinee's ability. In *Statistical theories of mental test scores*. Addison-Wesley.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. *Psychometrika*, 46, 443–459. https://doi.org/10.1007/BF02293801

Bollen, K. A. (1989). Structural equations with latent variables. Wiley.

- Bradshaw, C. P., & Kush, J. M. (2020). Teacher observation of classroom adaptation-checklist: Measuring children's social, emotional, and behavioral functioning. *Children & Schools*, 42, 29–40. https:// doi.org/10.1093/cs/cdz022
- Bradshaw, C. P., Schaeffer, C. M., Petras, H., & Ialongo, N. (2010). Predicting negative life outcomes from early aggressive-disruptive behavior trajectories: Gender differences in maladaptation across life domains. *Journal of Youth and Adolescence*, 39, 953–966. https://doi. org/10.1007/s10964-009-9442-8
- Conduct Problems Prevention Research Group (2019). *The Fast Track* program for children at risk: Preventing antisocial behavior. Guilford Press.
- Cooper, H., & Patall, E. A. (2009). The relative benefits of meta-analysis conducted with individual participant data versus aggregated data. *Psychological Methods*, 14, 165–176. https://doi.org/10.1037/ a0015565
- Cooper, H. M. (2009). Research synthesis and meta-analysis: A step-bystep approach (4th ed.). Sage.
- Curran, P. J., Cole, V. T., Bauer, D. J., Rothenberg, W. A., & Hussong, A. M. (2018). Recovering predictor-criterion relations using covariate-informed factor score estimates. *Structural Equation Modeling: A Multidisciplinary Journal*, 25, 860–875. https://doi.org/10.1080/ 10705511.2018.1473773
- Curran, P. J., Cole, V., Bauer, D. J., Hussong, A. M., & Gottfredson, N. (2016). Improving factor score estimation through the use of observed background characteristics. *Structural Equation Modeling: A Multidisciplinary Journal*, 23, 827–844. https://doi.org/10.1080/ 10705511.2016.1220839
- Curran, P. J., & Hussong, A. M. (2009). Integrative data analysis: The simultaneous analysis of multiple data sets. *Psychological Methods*, 14, 81-100. https://doi.org/10.1037/a0015914
- Curran, P. J., McGinley, J. S., Bauer, D. J., Hussong, A. M., Burns, A., Chassin, L., Sher, K., & Zucker, R. (2014). A moderated nonlinear factor model for the development of commensurate measures in integrative data analysis. *Multivariate Behavioral Research*, 49, 214–231. https://doi.org/10.1080/00273171.2014.889594
- DiStefano, C., Shi, D., & Morgan, G. B. (2021). Collapsing categories is often more advantageous than modeling sparse data: Investigations in the CFA framework. *Structural Equation Modeling: A Multidisciplinary Journal*, 28, 237–249. https://doi.org/10.1080/ 10705511.2020.1803073
- Eddy, J. M., Reid, J. B., Stoolmiller, M., & Fetrow, R. A. (2003). Outcomes during middle school for an elementary school-based preventive intervention for conduct problems: Follow-up results from a randomized trial. *Behavior Therapy*, 34, 535–552. https://doi. org/10.1016/S0005-7894(03)80034-5
- Finch, H. (2005). The MIMIC model as a method for detecting DIF: Comparison with Mantel-Haenszel, SIBTEST, and the IRT likelihood ratio. *Applied Psychological Measurement*, 29, 278–295. https:// doi.org/10.1177/0146621605275728
- Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. *Educational Researcher*, 5, 3–8. https://doi.org/10.3102/ 0013189X005010003
- Gottfredson, N. C., Cole, V. T., Giordano, M. L., Bauer, D. J., Hussong, A. M., & Ennett, S. T. (2019). Simplifying the implementation of modern scale scoring methods with an automated R package: Automated moderated nonlinear factor analysis (aMNLFA). Addictive Behaviors, 94, 65–73. https://doi.org/10.1016/j.addbeh. 2018.10.031
- Graham, E. K., Rutsohn, J. P., Turiano, N. A., Bendayan, R., Batterham, P. J., Gerstorf, D., Katz, M. J., Reynolds, C. A., Sharp, E. S., Yoneda, T. B., Bastarache, E. D., Elleman, L. G., Zelinski, E. M., Johansson, B., Kuh, D., Barnes, L. L., Bennett, D. A., Deeg, D. J. H., Lipton, R. B., ... Mroczek, D. K. (2017). Personality predicts mortality risk: An integrative data analysis of 15 international

longitudinal studies. Journal of Research in Personality, 70, 174-186. https://doi.org/10.1016/j.jrp.2017.07.005

- Graham, J. W. (2003). Adding missing-data-relevant variables to FIML-based structural equation models. *Structural Equation Modeling: A Multidisciplinary Journal*, 10, 80–100. https://doi.org/10. 1207/S15328007SEM1001_4
- Gross, A. L., Tommet, D., D'Aquila, M. D., Schmitt, E., Marcantonio, E. R., Helfand, B., ... Jones, R. N. (2018). Harmonization of delirium severity instruments: A comparison of the DRS-R-98, MDAS, and MAC-S using item response theory. *BMC Medical Research Methodology*, 18, 1–18. https://doi.org/10.1186/s12874-018-0552-4
- Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R package for facilitation large-scale latent variable analyses in Mplus. *Structural Equation Modeling: A Multidisciplinary Journal*, 25, 621–638. https://doi.org/10.1080/10705511.2017.1402334
- Holland, P. W., & Wainer, H. (1993). Differential item functioning. Erlbaum.
- Hussong, A. M., Curran, P. J., & Bauer, D. J. (2013). Integrative data analysis in clinical psychology research. *Annual Review of Clinical Psychology*, 9, 61–89. https://doi.org/10.1146/annurev-clinpsy-050212-185522
- Ialongo, N. S., Werthamer, L., Kellam, S. G., Brown, C. H., Wang, S., & Lin, Y. (1999). Proximal impact of two first-grade preventive interventions on the early risk behaviors for later substance abuse, depression, and antisocial behavior. *American Journal of Community Psychology*, 27, 599–641. https://doi.org/10.1023/A:1022137920532
- Jöreskog, K. G. (1967). A general approach to confirmatory maximum likelihood factor analysis. ETS Research Bulletin Series, 1967, 183–202. https://doi.org/10.1002/j.2333-8504.1967.tb00991.x
- Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations. *Psychometrika*, 36, 409–426. https://doi.org/10.1007/ BF02291366
- Kellam, S. G., Mayer, L. S., Rebok, G. W., & Hawkins, W. E. (1998). Effects of improving achievement on aggressive behavior and of improving aggressive behavior on achievement through two preventive interventions: An investigation of causal paths. In B. P. Dohrenwend (Ed.), Adversity, stress, and psychopathology (pp. 486–505). Oxford University Press.
- Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method for identifying and scaling latent variables in SEM and MACS models. *Structural Equation Modeling: A Multidisciplinary Journal*, 13, 59–72. https://doi.org/10.1207/s15328007sem1301_3
- Lord, F. M., & Novich, M. R. (1968). Statistical theories of mental test scores. Addison-Wesley.
- Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. *Psychometrika*, 58, 525–543. https://doi.org/10. 1007/BF02294825
- Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variables indicators. *Psychometrika*, 49, 115–132. https://doi.org/10.1007/ BF02294210
- Muthén, L. K., & Muthén, B. O. (2017). Mplus user's guide (8th ed.). Muthén & Muthén.
- Petras, H., Chilcoat, H. W., Leaf, P. J., Ialongo, N. S., & Kellam, S. G. (2004). Utility of TOCA-R scores during the elementary school

years in identifying later violence among adolescent males. *Journal* of the American Academy of Child and Adolescent Psychiatry, 43, 88–96. https://doi.org/10.1097/00004583-200401000-00018

- Petras, H., Ialongo, N., Lambert, S. F., Barrueco, S., Schaeffer, C. M., Chilcoat, H., & Kellam, S. (2005). The utility of elementary school TOCA-R scores in identifying later criminal court violence among adolescent females. *Journal of the American Academy of Child and Adolescent Psychiatry*, 44, 790–797. https://doi.org/10.1097/01.chi. 0000166378.22651.63
- R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
- Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. *Psychometrika*, 69, 167–190. https://doi.org/10.1007/BF02295939
- Rose, J. S., Dierker, L. C., Selya, A. S., & Smith, P. H. (2018). Integrative data analysis of gender and ethnic measurement invariance in nicotine dependence symptoms. *Prevention Science*, 19, 748–760. https://doi.org/10.1007/s11121-018-0867-8
- Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. *Psychological Methods*, 7, 147–177. https://doi.org/ 10.1037//1082-989X.7.2.147
- Sibley, M. H., & Coxe, S. J. (2020). The ADHD teen integrative data analysis longitudinal (TIDAL) dataset: Background, methodology, and aims. BMC Psychiatry, 20, 359. https://doi.org/10.1186/s12888-020-02734-6
- Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: Multilevel, longitudinal and structural equation models. Chapman & Hall/CRC.
- Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups. *British Journal of Mathematical and Statistical Psychology*, 27, 229–239. https://doi. org/10.1111/j.2044-8317.1974.tb00543.x
- Thissen, D. (2001). IRTLRDIF v.2.0.b: Software for the computation of the statistics involved in item response theory likelihood-ratio tests for differential item functioning. Thurstone Psychometric Laboratory, University of North Carolina at Chapel Hill.
- Thissen, D., Steinberg, L., & Wainer, H. (1993). Detection of differential item functioning using the parameters of item response models. In P. W. Holland & H. Wainer (Eds.), *Differential item functioning* (pp. 67–114). Routledge.
- Tolan, P., Gorman-Smith, D., & Henry, D. (2004). Supporting families in a high-risk setting: Proximal effects of the SAFEChildren Preventive Intervention. *Journal of Consulting and Clinical Psychology*, 72, 855–869. https://doi.org/10.1037/0022-006X.72.5.855
- Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70. https://doi.org/10.1177/109442810031002
- Werthamer-Larsson, L., Kellam, S., & Wheeler, L. (1991). Effect of first-grade classroom environment on shy behavior, aggressive behavior, and concentration problems. *American Journal of Community Psychology*, 19, 585–602. https://doi.org/10.1007/ BF00937993