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MEASUREMENT, STATISTICS, AND RESEARCH DESIGN

Statistical Power for Randomized Controlled Trials With
Clusters of Varying Size

Joseph M. Kush , Timothy R. Konold , and Catherine P. Bradshaw

University of Virginia, Charlottesville, VA, USA

ABSTRACT
In two-level designs, the total sample is a function of both the number of
Level 2 clusters and the average number of Level 1 units per cluster.
Traditional multilevel power calculations rely on either the arithmetic aver-
age or the harmonic mean when estimating the average number of Level
1 units across clusters of unbalanced size. The current study compares
these two approaches with simulation-based power estimates in cluster
randomized controlled trial designs with unbalanced cluster size. Results
from the Monte Carlo study demonstrated that the largest differences in
simulated and calculated power occurred in study designs with large vari-
ability in the number of Level 1 units sampled. We discuss implications of
these findings for the design of cluster randomized trials.
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RANDOMIZED CONTROLLED TRIALS (RCTs) are recognized as the “gold standard” for assess-
ing an intervention’s effectiveness (Institute of Education Sciences, 2003; Shadish et al., 2011). In
the simplest RCT design, individuals are randomly assigned to an intervention group or to a con-
trol group, with the goal of estimating the effects of an intervention. Group, or cluster, randomized
trials (CRTs) are increasingly prevalent as a means of designing evaluations of treatments in which
nested data structures are present (Murray, 1998). In these designs, the higher-level units (clusters)
are randomly assigned to treatment or control conditions. In educational settings, it is common for
CRTs to involve the nesting of students within classrooms or teachers within schools. In public
health CRTs, it might involve individuals nested in communities or neighborhoods; whereas in
health CRTs, patients might be nested within hospitals (Fitzmaurice et al., 2011). In CRTs, random-
ization equates entire clusters across treatment and control conditions on all pretreatment variables
(Berk, 2005). As such, CRTs are inherently multilevel in nature.

CRTs are quickly becoming the norm in educational and public health research. For example,
Atkinson and Wade (2015) evaluated the effects of a mindfulness-based intervention in the pre-
vention of eating disorders by randomly assigning 19 high school classrooms to intervention or
control. Another educational example involved 37 elementary schools that were randomly
assigned to a control condition or to a schoolwide prevention strategy, Positive Behavioral
Interventions and Supports, aimed at reducing disruptive behavior problems, to evaluate student
and staff outcomes (see Bradshaw et al., 2008). Yet another example of a CRT involved 22 clus-
ters of primary care sites that were randomly assigned to a control condition or to the Sustained
Patient-Centered Alcohol-Related Care prevention program, which aimed to address unhealthy
alcohol use (Glass et al., 2018).
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In practice, CRTs often have an unbalanced cluster size due to sampling designs, variation in
consent rates, or eligibility criteria. For example, schools may vary in the number of classrooms
within the school building, thus, creating imbalance among Level 1 units across clusters. In other
studies, eligibility criteria (e.g., children with special education needs, Autism, or an
Individualized Education Program) may result in considerable variability in the Level 1 units
across schools. It is also possible that low or variable consent rates may contribute to unbalanced
Level 1 units across the clusters. These and other such issues may make it challenging to estimate
power, particularly when the number of Level 1 units is small. To date, there has been limited
consideration of the impact of small and variable cluster sizes on power within the context of
CRTs. Having an enhanced understanding of the effects of these types of varying parameters on
power calculations may prove useful both for designing CRT studies and for determining the
power to detect a significant effect in trials after they are fielded and to experience these real-
world implementation challenges.

Evaluating treatment effects in CRTs

Data arising from two-group, two-level CRTs can be evaluated through the following equations,
expressed here in hierarchical form:

Level 1 : yij ¼ b0j þ eij, eij � N 0,r2ð Þ
Level 2 : b0j ¼ c00 þ c01 � Tj þ u0j, u0j � N 0, sð Þ, (1)

where, at Level 1, yij represents the observed outcome y for unit i in cluster j, b0j is the mean
outcome for cluster j, and eij is an error term for each Level 1 unit that is assumed to follow a
normal distribution with a mean of zero and a within-cluster variance, r2: At Level 2, c00 is the
grand mean outcome, c01 is the mean difference in the outcome between treatment and control
clusters, Tj is a binary treatment indicator variable for cluster j, and u0j is a random effect term
for cluster j that is assumed to follow a normal distribution with a mean of zero and a between-
cluster variance, s:

In two-group, two-level CRTs, researchers are often interested in power calculations regarding
the treatment effect, c01 :

ĉ01 ¼ Y�T � Y�C, (2)

where YT and YC represent mean outcome values for the treatment group and control group,
respectively. When there is an equal probability for study participants to be assigned to treatment
or control conditions, the variance of the treatment effect can be estimated as

Var ĉ01ð Þ ¼
4 sþ r2

n

� �

J
, (3)

where n is the number of units per cluster and J is the number of clusters (Raudenbush, 1997). A
nondirectional statistical hypothesis of

H0 : c01 ¼ 0
Ha : c01 6¼ 0

can be evaluated through an F statistic that can be derived from a two-factor ANOVA model
(Kirk, 1982):

F ¼ MST
MSC

, (4)

where MST represents the mean squares for the treatment groups (fixed factor) and MSC repre-
sents the mean squares for the clusters (random factor). As the number of clusters J increases,
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the F statistic converges to the following ratio of expected mean squares:

E MSTð Þ
E MSCð Þ ¼ 1þ k,

where

k ¼ nJc201=4
nsþ r2

: (5)

When the null hypothesis is false, the F statistic follows a noncentral F distribution with one
degree of freedom in the numerator, J-2 degrees of freedom in the denominator, and a noncen-
trality parameter k :

k ¼ c201

4 sþ r2
n

� �
=J

: (6)

In balanced designs, when the numbers of clusters are equal across experimental conditions,
estimation of the two-level CRT model using restricted maximum likelihood (REML) matches
results of the nested ANOVA. However, REML estimation is better suited for instances in which
the number of clusters varies across conditions (Raudenbush, 1993).

To give more meaning to parameters, variability can be redefined in terms of the intraclass
correlation coefficient, q :

q ¼ s
sþ r2

: (7)

Here s is equal to the between-cluster variance, r2 is equal to the within-cluster variance, and
s þ r2 is equal to the total variance. The intraclass correlation coefficient can be interpreted as
the proportion of variance in the outcome that is between clusters or, more generally, an indica-
tor of the degree of clustering. Similarly, the treatment effect can be standardized, d :

d ¼ c01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ r2

p : (8)

Here, c01 is equal to the difference in population means between treatment and control groups.
Thus, the estimated standardized effect size, d̂, can be estimated by

d̂ ¼ Y�T � Y�Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ r2

p , (9)

where yT and yC represent the mean outcomes for the treatment and control groups, respectively.
The standardized effect size can be interpreted as the standard deviation difference between mean
outcomes for the treatment and control groups.

Power in CRTs

The probability of being able to reject the null hypothesis of no treatment effect when one exists
is referred to as the power of a test. Given the significant time, effort, and costs associated with
conducting CRTs, it is important that researchers design the trial to be adequately powered to
detect a treatment effect for a particular design, estimated effect size, and projected sample size.
Power in multilevel models is affected by multiple factors including the significance level a, the
treatment effect d, the intraclass correlation coefficient q, the number of Level 2 clusters, and the
number of Level 1 units per cluster (ni; Spybrook et al., 2011).

Among these, the number of clusters and the number of units per cluster are likely to be the
most malleable of the factors affecting power that are in the researchers’ control. For this reason,
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the effects of sampling decisions on power within multilevel frameworks has remained an active
area of research (e.g., Cox & Kelcey, 2019; Kelcey et al., 2019; Konstantopoulos, 2010; Usami, 2014).
For example, research has demonstrated that increasing the number of J clusters sampled improves
power more than increasing the number of i units per cluster (Snijders & Bosker, 1993; Spybrook
et al., 2011). However, the sampling of additional clusters often comes at a greater financial cost
than the sampling of more i units per cluster and could be less realistic in applied settings. See for
example, Raudenbush and Liu (2000) and Snijders and Bosker (1999) for additional discussion of
optimal costs and efficient allocations of resources in multilevel designs.

One area of methodological focus has been on how different numbers of clusters assigned to
experimental conditions impact estimates of power. For instance, Konstantopoulos (2010) examined
the effects on power in CRT designs when sample sizes between treatment and control groups dif-
fered. Results indicated that power estimates for unbalanced designs were smaller than those from
balanced designs (i.e., equal number of clusters in treatment and control). Similarly, Liu (2003) con-
sidered unbalanced designs in terms of unequal sample allocation between treatment and control
units and effects on costs per sampling unit. In the aggregate he found that statistical power may be
higher for unbalanced designs as compared to balanced designs if the control condition costs signifi-
cantly less money than the intervention condition. As such, optimal power occurs when approxi-
mately 75% of all clusters are assigned to control, with only 25% of clusters assigned to treatment.

The issue of unbalanced cluster size

As noted above, in multilevel CRTs, the total sample size is a function of both the number of
Level 2 clusters and the number of Level 1 units within clusters. In most power calculations, esti-
mates of the total sample size are typically obtained as the product of the number of Level 2 clus-
ters (J) multiplied by the average number of Level 1 units per cluster (ni) where the arithmetic
average number of Level 1 units per cluster, ni, is equal to the total number of Level 1 units
sampled (i) divided by the total number of clusters sampled (J):

ni ¼
P

i
J

: (10)

Use of the arithmetic average number of Level 1 units, however, might be inappropriate for
scenarios in which the number of Level 1 units varies widely across clusters. For example, con-
sider two different CRT designs. In Study A, exactly 10 units are sampled from each of 50 clus-
ters. In Study B, two units are selected from each of 49 clusters and 402 units are selected from
one cluster. In both studies, a total of J¼ 50 clusters was selected, and both have the same aver-
age number of units per cluster, ni ¼ 10. While there is no variability in the number of units per
cluster sampled in Study A, there is extreme variability in the number of units per cluster in
Study B (SD ¼ 56). Yet traditional power calculations, which assume an average number of Level
2 units per cluster, would yield the same power estimates for both studies, holding all other fac-
tors constant. However, the standard errors in Study B would be materially influenced by the
unbalanced nature of the single cluster in which 402 Level 1 units were samples. For this reason,
researchers have suggested replacing the arithmetic average with the harmonic mean to more
closely approximate the standard error of a treatment effect when cluster sizes are unequal
(Cohen, 1988; Kelcey et al., 2019; Raudenbush, 1997; Spybrook et al., 2011), where the harmonic
mean number of Level 1 units per cluster (niH ) is equal to the total number of clusters (J) divided
by the summation of the reciprocal of each cluster sample size (i) across all clusters:

niH ¼ JPJ
j¼1
i�1

: (11)
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In the example above, the niH¼ 10 in Study A, while niH¼ 2.04 for Study B. The harmonic
mean reflects the meaningful differences in sampling designs between the two fictitious studies.

Several simulation-based studies of power in CRTs have focused on the performance of power
estimates in the context of the arithmetic average of the projected cluster size (Maas & Hox,
2005; Scherbaum & Ferreter, 2009). For example, in school-based work, this is often done by esti-
mating the average number of students or teachers per school that are likely to enroll in the pro-
ject. However, simulation work by Manatunga et al. (2001) demonstrated that use of the
arithmetic average in CRT power calculations underestimated the sample size required when deal-
ing with large variations in Level 1 units across clusters. As a result, the researchers proposed a
correction term in which the total number of clusters sampled increases as the variability in clus-
ter sizes increases. Others recommend increasing the number of clusters sampled by 10% to cor-
rectly account for variation in cluster size (Van Breukelen et al., 2007). Given the cost and
burden associated with conducting CRTs, these adjustments to the study design need to be care-
fully considered, and more precise estimates are needed to ensure adequate power in the context
of real-world situations in which imbalance is likely to occur. As such, there is need for improved
understanding of the impact of variation in the Level 1 units on power in CRTs.

Current study

Much of the research on power in the context of CRTs has focused on the effects on estimates
derived from the arithmetic mean, the harmonic mean, and/or proposed correction terms. Yet lit-
tle is known about how CRTs with variability in the number of Level 1 units per cluster compare
with power calculations that are based on either the arithmetic average or the harmonic mean
number of Level 1 units per cluster. The current study evaluated how variation in the number of
Level 1 units per cluster impacts statistical power in the context of two-level CRT designs through
the use of a Monte Carlo simulation study. Specifically, we sought to address the following
research question: How do traditional calculations of multilevel power utilizing the arithmetic aver-
age number of Level 1 units per cluster or the harmonic mean compare to simulation-based esti-
mates of power for two-level cluster randomized trials with clusters of varying size?

To address this research question, we used Monte Carlo simulations to generate data from a
predefined population with fixed parameter values. Models were fit to the data and estimates of
the treatment effect were used to determine the simulation-based estimates of power. These esti-
mates of power were then compared to calculations of power that utilized the arithmetic average
number of Level 1 units per cluster and the harmonic mean-based number of Level 1 units per
cluster to understand more about the role of variability in cluster sample size and its relation to
statistical power. We were particularly interested in the lower end of this range, such as in the
context of CRTs with few Level 1 units (e.g., students with special education needs in a school or
few early-career teachers within a school), as we anticipated that imbalance in these situations
would lead to more-biased estimates of power than in studies with a large number of Level 1
units. We also considered the impact of variation of several parameters, such as the total number
of Level 2 clusters, the intraclass correlation coefficient (ICC), and the effect size within the con-
text of the Monte Carlo simulation.

Method

Simulation study

Multilevel data sets were simulated for two-level CRT designs, in which Level 1 units were nested
within Level 2 clusters and treatment was assigned at the cluster level. Outcome values for Level
1 units were generated through the following equation:
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Yij ¼ d� Tj þ u0j þ eij: (12)

Here, Yij represents an observed continuous outcome value for unit i in cluster j, d represents a
standardized effect size associated with being in a treatment cluster, Tj represents a binary treat-
ment indicator variable for cluster j, u0j represents a random effect term for cluster j, and eij rep-
resents an error term for each Level 1 unit. Importantly, u0j followed a normal distribution with
a mean equal to zero and a variance s equal to a specified intraclass correlation coefficient q:
Similarly, eij followed a normal distribution with a mean equal to zero and a variance equal to 1
q: Moreover, all clusters were assumed to have an equal probability of being assigned to treat-
ment or control conditions, such that P(Tj ¼ 1) ¼ 0.5. Data sets were generated using R 2.3.1
software (R Core Team, 2020).

Following data generation, a mixed-effects model was fit to the data, in which the average
treatment effect estimate was the parameter of interest. All models were estimated using REML
estimation to appropriately handle unbalanced cluster sizes (Raudenbush, 1993). The power to
detect a treatment effect is defined as the proportion of replications for which the null hypothesis,
that the parameter is equal to zero, is rejected at a given significance level. We used the .05 sig-
nificance level (two-tailed test with a critical value equal to 1.96) for all models. Models were fit
using the lme4 package in R (Bates et al., 2015).

Power estimates obtained through the use of the arithmetic average number of Level 1 units
per cluster and the harmonic mean number of Level 1 units per cluster were then compared to
simulation-based estimates of power. As previously noted, the computation of power for the aver-
age treatment effect uses an F statistic that follows a noncentral F distribution with one degree of
freedom in the numerator and J-2 degrees of freedom in the denominator, with the noncentrality
parameter k: Let FCV represent the critical value of F for a nondirectional test with a significance
level of .05. Then, power for the model presented in Equation 12 was calculated as:

Power ¼ 1� b,

where

b ¼ Prob F 1, J � 2; kð Þ < FCV½ �: (13)

Design facets

The Monte Carlo simulation contrasted a total of five design facets: (a) the number of Level 2
units J, (b) the ICC q, (c) the standardized effect size d, (d) the minimum number of Level 1
units per cluster, and (e) the maximum number of Level 1 units per cluster. This resulted in a
total of 1,260 unique simulation cells. All design facets are presented in Table 1.

Regarding the number of Level 2 clusters, prior research by Hox and Maas (2001) and Maas
and Hox (2005) found cluster sizes of fewer than 50 may lead to biased estimates in multilevel
structural equation models. For simpler observed multilevel models, recommendations for more
than 10 clusters (Snijders & Bosker, 1993) and more than 30 clusters (Hoyle & Gottfredson,
2015) have been made to ensure reliable estimates. A recent review of 49 empirical studies exam-
ining school-level treatment effects for CRTs revealed a range of J¼ 11 to J¼ 60 sampled schools
for two- and three-level designs (Spybrook, 2014). In these studies, the mean number of schools
was 30.4 (SD¼ 16.7, median¼mode ¼ 30). Given that power approaches 1 as the number of
clusters increases, regardless of other factors (Bloom, 2005; Spybrook et al., 2011), we anticipated
that any differences between calculated power and simulation-based estimates of power would
decrease toward 0 as J increased toward infinity. Based on these considerations, we fit models
with four different sample sizes of Level 2 units: J¼ 20, 30, 50, and 60.

With regard to variation in the ICCs, research on educational interventions and meta-analyses
have reported ICC values typically ranging from 0.05 to 0.25 (Bloom et al., 1999; 2007; Hedges &
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Hedberg, 2007; Murray & Short, 1995). Therefore, we chose three different ICCs: q ¼ 0.05, 0.10,
and 0.20 within this range.

Regarding standardized effect sizes, three different values were selected: d ¼ 0.20, 0.30, and
0.40. These values can be interpreted analogously to Cohen’s d (Cohen, 1992), in which effects
less than 0.20 are considered small, from 0.20 to 0.5 are considered moderate, and above 0.50 are
considered large. In a meta-analysis of 61 school-level CRTs, Hill et al. (2007) found mean effect
sizes in the 0.20 to 0.30 range. Similarly, Spybrook et al. (2016) conducted a meta-analysis of 38
school-level CRTs in which the minimum detectable effect size for the two cohorts considered is
0.48 and 0.23, respectively, ultimately suggesting that educational CRTs be designed to detect
effect sizes in the range of 0.20 to 0.30.

Lastly, we varied both the minimum and maximum number of Level 1 units per cluster.
Specifically, we considered five values for the minimum number of Level 1 units per cluster: nmin

¼ 5, 10, 15, 20, and 30. We also considered seven values for the maximum number of Level 1
units per cluster: nmax ¼ 10, 15, 20, 25, 30, 40, and 50. In all scenarios, the minimum and max-
imum number of Level 1 units per cluster were evenly split between clusters. For scenarios in
which the minimum number of Level 1 units per cluster was equal to the maximum number, the
arithmetic average number of Level 1 units per cluster was equal to the harmonic mean. In total,
5,000 iterations were conducted for each unique simulation condition.

Results

Simulation-based estimates of power were calculated as the proportion of iterations for which the
null hypothesis, that the treatment effect is equal to 0, was rejected at the .05 significance level.
The simulation-based estimates of power were then compared to calculations of power utilizing
either the arithmetic average or harmonic mean number of Level 1 units per cluster. Values rep-
resenting the relative difference between simulation-based estimates of power and calculated
power are presented in Tables 2–5. To condense the amount of output provided in each table,
while still providing key summaries, we restricted the maximum number of Level 1 units per
cluster to 10, 25, and 50 in our tables for ease of presentation.

Several general findings emerged across all conditions and scenarios. The majority (77%) of
power calculations based on the arithmetic average number of Level 1 units per cluster calcula-
tions were greater than the simulation-based estimates of power. This can be seen by the majority
of positive values in the upper half of Tables 2–5, as this indicates that arithmetic average calcula-
tions of power tend to overestimate true power. By contrast, the majority (77%) of power calcula-
tions based on the harmonic mean number of Level 1 units per cluster were less than the
simulation-based estimates of power. Similarly, this can be seen by the majority of negative values
in the lower half of Tables 2–5, as this indicates that harmonic mean calculations of power tend
to underestimate true power.

Differences between the arithmetic average and the harmonic mean number of Level 1 units
per cluster were also related to differences in power. For example, the larger the difference
between the arithmetic average and the harmonic average number of Level 1 units per cluster,
the larger the difference in power between simulation-based estimates and calculations

Table 1. Summary of Monte Carlo population specifications for two-level CRT designs with variability in Level 1 units.

Level 2 Sample Size J¼ 20, 30, 50, 60
ICC q ¼ 0.05, 0.10, 0.20
Effect Size d ¼ 0.2, 0.3, 0.4
Minimum Level 1 Sample Size ni ¼ 5, 10, 15, 20, 30
Maximum Level 1 Sample Size ni ¼ 10, 15, 20, 25, 30, 40, 50
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utilizing the arithmetic average (r ¼ �.73, p < .01). Similarly, the larger the difference between
the arithmetic average and the harmonic average number of Level 1 units per cluster, the
larger the difference in power between simulation-based estimates and calculations utilizing
the harmonic mean (r ¼ .60, p < .01). Taken together, these findings suggest that calculations
of power utilizing either the arithmetic average or harmonic mean number of Level 1 units per
cluster may overestimate or underestimate, respectively, the true power of a model when
cluster sizes are unbalanced.

With regard to variation in the number of Level 1 units, holding constant all factors other
than Level 1 sample sizes, the largest difference in power between simulated power and arithmetic
average power occurred in instances in which there were a minimum of five per cluster and a
maximum of 50 units per cluster, representing large Level 1 variability. Here, simulated power
was less than the arithmetic average calculation. For example, results for J¼ 20 clusters are shown
in Table 2. The largest difference in power between simulated power and harmonic mean power
also occurred with the minimum of five and maximum of 50 units per cluster scenario, where
simulated power was greater than the harmonic mean calculation. For example, the largest differ-
ence in arithmetic average calculations of power and simulated power occur for the scenario with
a minimum of five and maximum of 50 units per cluster, an ICC of 0.05, and an effect size of

Table 2. Differences between calculated and simulated power for two-level CRT designs for J¼ 20 clusters.

Calculated Power Using Arithmetic Average Minus Simulated Power

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 .007 .007 .011 .003 .005 .009 �.005 .004 .006
25 .026 .034 .061 .008 .032 .046 .008 .010 .026
50 .046 .103 .085 .029 .065 .092 .020 .031 .048

10 10 .008 .005 .004 .007 .002 .006 .003 .008 .012
25 .011 .032 .023 .001 .003 .006 .007 .004 .012
50 .025 .045 .050 .011 .034 .026 .010 .003 .021

15 10 .011 .008 .001 .004 .001 .010 .004 .003 .010
25 .010 .007 .006 .003 .005 .014 .001 .001 .010
50 .018 .035 .028 .003 .023 .017 .004 .003 .012

20 10 .004 .003 .011 .001 .002 .018 .012 .006 .014
25 .001 .005 .003 .006 .002 .003 .010 �.004 .003
50 .014 .013 .009 .001 .006 .014 .002 .001 .008

30 10 .014 .036 .030 .002 .008 .020 .003 .004 .003
25 .003 .008 .003 .007 .006 .003 .001 .001 .000
50 .003 .011 .013 .004 .003 .004 .008 .004 .020

Calculated Power Using Harmonic Mean Minus Simulated Power
5 10 .002 �.015 �.021 �.004 �.008 �.012 �.008 �.003 �.005

25 .031 �.082 �.094 �.022 �.034 �.052 �.004 �.017 �.018
50 .063 �.109 �.166 �.023 �.045 �.068 .001 �.010 �.020

10 10 .008 .005 .004 .007 �.002 �.006 .003 .008 .012
25 .010 �.009 �.024 �.011 �.024 �.024 �.010 �.011 �.001
50 .034 �.061 �.060 �.014 �.018 �.045 .002 �.014 �.008

15 10 .007 .000 �.010 �.006 �.004 .003 �.005 .001 .007
25 .003 �.005 �.007 �.006 �.011 .005 �.002 �.003 �.014
50 �.016 �.023 �.026 �.010 �.005 �.019 �.008 �.006 �.002

20 10 �.008 �.027 �.018 �.005 �.014 �.001 .010 .001 .006
25 .000 .003 �.005 .006 �.003 �.005 �.010 �.004 .003
50 �.005 �.019 �.019 �.006 �.009 �.005 �.004 �.003 .000

30 10 �.015 �.021 �.034 �.015 �.020 �.021 �.008 �.007 �.013
25 �.004 �.009 .001 .006 .005 �.003 .001 �.001 �.001
50 �.002 .002 .006 �.006 �.002 �.001 �.009 �.006 .018

Note. The maximum number of Level 1 units per cluster has been restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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0.3. By contrast, the smallest differences in power occurred for scenarios with almost no variation
in Level 1 sample sizes for both the arithmetic average and harmonic mean calculations of power.

Similar results were found for J¼ 30 clusters, presented in Table 3. The largest differences in
power, holding all else equal, occurred for the scenario with a minimum of five and maximum of
50 units per cluster, the scenario with the largest variability in Level 1 sample sizes. For example,
the largest difference in harmonic mean calculations of power and simulated power occur for the
scenario with a minimum of five and maximum of 50 units per cluster, an ICC of 0.05, and an
effect size of 0.3. These differences in power were true for calculations utilizing either the arith-
metic average or the harmonic mean. In general, simulated power in Table 3 was less than the
calculation of power with the arithmetic average but greater than the calculation of power with
the harmonic mean.

Next, we examined the models for J¼ 50 clusters (see Table 4). Again, holding all facets con-
stant, we see that the largest difference in power between simulated power and calculation of
power using the arithmetic average occurred for the scenario with a minimum of five and max-
imum of 50 units per cluster, where simulated power is less than the calculation. The largest dif-
ference in power between simulated power and calculation of power using the harmonic mean
again occurs for the same scenario with large variability in Level 1 units, where simulated power
was greater than the calculation of power. More specifically, the largest differences, as shown in
Table 4, can be seen for the scenario with a minimum of five and maximum of 50 units per

Table 3. Differences between calculated and simulated power for two-level CRT designs for J¼ 30 clusters.

Calculated Power Using Arithmetic Average Minus Simulated Power

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 .004 .020 .010 .007 .001 .012 .000 .015 .013
25 .031 .050 .059 .023 .045 .059 .005 .031 .037
50 .065 .100 .067 .052 .086 .093 .016 .041 .068

10 10 .010 .005 .002 �.007 .014 .008 �.011 .001 �.009
25 .014 .026 .017 .001 .020 .027 .009 .007 �.002
50 .045 .056 .030 .025 .027 .035 .010 .020 .028

15 10 �.001 .005 �.004 �.002 �.002 .005 �.002 .003 .005
25 �.002 �.007 .010 .007 .012 .013 �.002 .004 .001
50 .029 .030 .019 .003 .008 .021 �.004 .010 .006

20 10 �.004 .011 .010 .005 .025 .009 .012 �.002 .005
25 �.002 .000 .002 �.003 .020 �.001 �.007 .004 .002
50 .018 .021 .005 .016 .020 .001 �.002 .003 .010

30 10 .018 .035 .017 .008 .019 .039 .000 .009 .022
25 .021 .008 .001 �.003 �.012 .000 .004 �.006 .005
50 .005 .005 .002 .002 .006 .009 �.006 �.005 .005

Calculated Power Using Harmonic Mean Minus Simulated Power
5 10 �.019 �.010 �.027 �.003 �.019 �.016 �.004 .005 �.003

25 �.057 �.102 �.084 �.025 �.048 �.054 �.014 �.010 �.024
50 �.101 �.153 �.130 �.030 �.066 �.076 �.014 �.022 �.024

10 10 .010 .005 .002 �.007 .014 .008 �.011 .001 �.009
25 �.018 �.022 �.018 �.015 �.009 �.004 .003 �.004 �.019
50 �.042 �.058 �.037 �.014 �.042 �.032 �.002 �.007 �.009

15 10 �.008 �.006 �.013 �.005 �.009 �.003 �.003 .000 .001
25 �.012 �.021 .002 .002 .003 .004 �.003 .000 �.004
50 �.020 �.027 �.010 �.018 �.027 �.012 �.010 �.003 �.012

20 10 �.023 �.018 �.013 �.004 .007 �.011 .008 �.009 �.006
25 �.004 �.003 .001 �.004 .018 �.003 �.007 .004 .001
50 �.009 �.009 �.008 .004 .001 �.016 �.006 �.004 .000

30 10 �.027 �.030 �.028 �.014 �.020 �.002 �.007 �.007 .000
25 .019 .006 .000 �.003 �.013 �.001 .004 �.006 .005
50 �.003 �.003 �.001 �.001 .001 .004 �.007 �.006 �.007

Note. The maximum number of Level 1 units per cluster has been restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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cluster, an ICC of 0.05, and an effect size of 0.2. The smallest differences in power for both simu-
lated power versus arithmetic-average-calculated power and simulated power versus harmonic-
mean-calculated power were observed in scenarios with small variability in cluster size.

Finally, results for J¼ 60 clusters are reported in Table 5. Holding all other factors equal, the
largest differences in power occur for the scenario with a minimum of five and maximum of 50
units per cluster, representing the scenario with the largest variability in Level 1 sample sizes.
While simulated power was less than calculated power using the arithmetic average, simulated
power was greater than the calculated power using the harmonic mean. The smallest differences
in power again occur for scenarios with very little variability in Level 1 units. For example, the
difference in harmonic mean calculated power and simulated power is less than 0.001 for the
scenario with a minimum of 20 and maximum of 25 units per cluster, an ICC of 0.1, and an
effect size of 0.4.

It is important to note that overall, any differences between simulation-based estimates of
power and calculations of power using the arithmetic average were not systematically related to
Level 2 sample size (r ¼ .02, p ¼ .58) or effect size (r ¼ .02, p ¼ .52) but were related to the
ICC (r ¼ �.14, p < .01), although the relative magnitude of the correlation appears small.
Similarly, differences between simulation-based estimates of power and calculations of power
using the harmonic mean were not systematically related to Level 2 sample size (r ¼ .01, p ¼.68)
or effect size (r ¼ .01, p ¼ .98) but were related to the ICC (r ¼ .27, p < .01), again relatively
small in magnitude. However, the difference in the number of Level 1 units per cluster

Table 4. Differences between calculated and simulated power for two-level CRT designs for J¼ 50 clusters.

Calculated Power Using Arithmetic Average Minus Simulated Power

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 .004 .009 .006 .012 .010 .005 .000 .017 �.005
25 .055 .046 .013 .037 .055 .041 .018 .045 .039
50 .103 .073 .013 .065 .085 .051 .031 .058 .069

10 10 .000 .000 �.002 .013 �.008 �.003 .004 .003 .006
25 .017 .018 .004 .022 .019 .010 �.001 .016 .010
50 .055 .024 .002 .037 .044 .017 .025 .032 .033

15 10 .012 �.001 .001 �.002 .000 .009 �.004 �.007 .012
25 �.002 �.005 .001 �.004 .013 .003 .004 .006 �.005
50 .041 .017 .002 .036 .019 .008 .006 .025 .019

20 10 �.002 .013 .005 .016 .004 .004 �.002 .001 .007
25 �.002 �.002 .000 .006 .009 .001 .002 .003 �.008
50 .009 .003 .002 .002 .014 .005 �.002 .013 .016

30 10 .022 .016 .005 .039 .023 .013 .005 .008 .009
25 �.006 .003 �.002 �.013 .000 �.003 �.001 .005 �.007
50 .002 .003 .000 .002 .017 .001 �.001 �.004 .000

Calculated Power Using Harmonic Mean Minus Simulated Power
5 10 �.022 �.028 �.020 �.004 �.017 �.019 �.008 .001 �.024

25 �.080 �.099 �.048 �.041 �.059 �.036 �.014 �.016 �.027
50 �.135 �.128 �.050 �.066 �.086 �.049 �.020 �.033 �.024

10 10 .000 .000 �.002 .013 �.008 �.003 .004 .003 .006
25 �.028 �.018 �.005 �.002 �.012 �.006 �.010 �.001 �.007
50 �.060 �.045 �.009 �.023 �.025 �.014 .003 �.005 �.003

15 10 .003 �.010 �.002 �.008 �.008 .005 �.007 �.011 .008
25 �.015 �.014 �.001 �.011 .005 �.001 .001 .001 �.010
50 �.020 �.013 �.001 .004 �.015 �.005 �.005 .007 .002

20 10 �.029 �.010 �.002 .001 �.016 �.007 �.008 �.010 �.004
25 �.005 �.004 �.001 .005 .007 .001 .002 .002 �.008
50 �.024 �.011 .001 �.015 �.003 �.001 �.007 .004 .007

30 10 �.041 �.030 �.005 .005 �.018 �.008 �.008 �.014 �.013
25 �.008 .003 �.002 �.014 .000 �.003 �.001 .004 �.007
50 �.007 �.001 .000 �.003 .013 �.001 �.002 �.007 �.003

Note. The maximum number of level-1 units per cluster has been restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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(i.e., nmax � nmin) was significantly related to differences in simulation-based estimates of power
for both arithmetic average calculations of power (r ¼ .53, p < .01) and harmonic mean calcula-
tions of power (r ¼ �.44, p < .01). Taken together, the findings consistently suggested that the
variability in Level 1 sample sizes was the primary source behind any differences in power
between simulation-based estimates and calculations of power.

Discussion

CRTs have been the focus of considerable methodological work (Dong et al., 2018; Kelcey et al.,
2019; Konstantopoulos, 2012; Schochet, 2008; Usami, 2014). The current study adds to the litera-
ture by considering designs with unequal Level 1 sample sizes across clusters. Previous work in
this area suggests that use of the harmonic mean is preferred over the arithmetic mean when
numbers of Level 1 units are not equal across clusters in CRT conducted in real-world settings
such as schools. The current interrogation of this issue leveraged simulation-based estimates of
power, thereby, enabling us to contrast power estimates that would be obtained through use of
the arithmetic average or the harmonic mean across a range of parameters (e.g., ICC, Level 1
sample sizes). In the real world, clusters vary in size; this is almost always the rule rather than
the exception. This may be due in part to a limited eligible participant pool, dropout or attrition
of participants, and other recruitment issues (Groves et al., 2009; Manatunga et al., 2001). For

Table 5. Differences between calculated and simulated power for two-level CRT designs for J¼ 60 clusters.

Calculated Power Using Arithmetic Average Minus Simulated Power

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 .008 .009 .012 .001 .015 .011 .005 .014 .005
25 .053 .038 .008 .056 .064 .024 .020 .030 .036
50 .100 .040 .004 .083 .086 .032 .046 .077 .055

10 10 �.009 .001 �.003 .004 .004 �.005 .003 �.007 .007
25 .015 .014 .002 .013 .010 .006 .012 .019 .005
50 .058 .015 .001 .057 .036 .012 .018 .029 .011

15 10 .014 .005 .000 .001 .009 .002 �.008 .005 .006
25 .011 .005 .000 .011 .007 .003 �.001 .016 �.002
50 .023 .007 .000 .024 .019 .002 .010 .015 .008

20 10 .016 .009 .001 �.003 .006 .003 .006 .011 .003
25 .007 .000 �.001 �.002 .002 .001 �.004 .002 .008
50 .023 .006 .000 .009 .019 .000 .009 .008 .003

30 10 .020 .017 .002 .029 .031 .008 .018 .018 .013
25 .004 �.003 .000 �.005 .002 .003 .004 �.002 �.001
50 .006 .002 .000 .002 �.003 .000 .001 .014 �.010

Calculated Power Using Harmonic Mean Minus Simulated Power
5 10 �.021 �.027 �.005 �.019 �.014 �.009 �.004 �.003 �.012

25 �.096 �.084 �.026 �.035 �.045 �.030 �.019 �.036 �.023
50 �.153 �.115 �.027 �.066 �.070 �.033 �.014 �.020 �.026

10 10 �.009 .001 �.003 .004 .004 �.005 .003 �.007 .007
25 �.033 �.012 �.001 �.015 �.018 �.004 .001 .001 �.009
50 �.058 �.030 �.002 �.010 �.023 �.005 �.007 �.010 �.018

15 10 .004 �.003 �.002 �.006 .002 �.001 �.011 .001 .002
25 �.002 �.001 �.001 .003 .000 .001 �.004 .011 �.005
50 �.036 �.010 �.001 �.011 �.009 �.005 �.003 �.004 �.006

20 10 �.013 �.009 �.002 �.020 �.012 �.004 �.001 �.001 �.006
25 .004 �.001 �.001 �.003 .001 .000 �.005 .001 .007
50 �.009 �.002 .000 �.010 .005 �.003 .003 �.002 �.004

30 10 �.045 �.016 �.002 �.009 �.006 �.004 .003 �.005 �.005
25 .003 �.004 .000 �.005 .001 .003 .004 �.002 �.002
50 �.002 .000 .000 �.004 �.006 �.001 �.001 .012 �.012

Note. The maximum number of Level 1 units per cluster has been restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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example, Resnicow et al. (1998) conducted a study in which 32 schools were randomized to a
health promotion educational intervention or control. Here, all third-grade students in the same
school received the same intervention or control condition. However, the number of third-grade
students in each school ranged from 20 to 81. Other examples include Tolan et al. (2020) who
sampled 188 teachers from 72 schools, with a range of 1–13 teachers sampled from each school,
and Lam et al. (2015) who sampled 3,288 students in from 188 classrooms, with a range of 6–28
students sampled from each school.

As such, this paper advances prior work on statistical power for CRTs and multilevel designs
more generally by examining how different estimates of cluster size can impact traditional power
calculations when the number of units per cluster is not constant. To address these gaps in the
research, we examined simulation-based estimates of statistical power for two-level CRTs with
variability in Level 1 sample size. Our results suggest that differences between simulation-based
estimates and calculation-based estimates of power increase as variability in Level 1 sample size
increases. Holding all simulation study facets constant (i.e., ICC, effect size), the largest differen-
ces in power values occurred in instances in which there was a minimum of five units per cluster
and a maximum of 50 units per cluster; more specifically, these power differences were most pro-
nounced when the number of Level 1 units was small (i.e., below 20).

In such scenarios, calculated power utilizing the arithmetic average tended to overestimate true
power, while calculated power utilizing the harmonic mean tended to underestimate true power.
By contrast, the smallest differences in power values, holding all other facets constant, occurred
for scenarios with the smallest variability in Level 1 sample sizes. We were particularly interested
in the low end of the Level 1 sample size range to determine the point at which researchers
should become concerned about such variability in the cluster sizes. Results demonstrated that
calculations of power increasingly diverged from the true simulation-based power as the min-
imum number of Level 1 units per cluster decreased. Moreover, the larger the variability in Level
1 sample sizes, the larger the differences in power.

Limitations

There are a few general limitations to our study that are important to note. First, the Monte
Carlo simulation setup for this study examined a variety of facets with plausible values deter-
mined from prior meta-analyses in educational research. However, we were not able to explore
all possible variants for each facet. For instance, we considered variability in the number of Level
1 units per cluster toward the lower end of sample sizes. We did not consider a scenario with a
minimum of nmin¼ 50 Level 1 units per cluster and a maximum of nmax¼ 95, as the impact of
cluster size variability on power estimates likely diminishes after Level 1 sample size reaches a
certain threshold. Similar arguments hold for the total number of clusters, as power has been
shown to increase toward 1 as the total number of clusters increases, regardless of other factors
(Bloom, 2005; Spybrook et al., 2011). While the current study explored scenarios with 20 clusters,
Spybrook’s (2014) review of empirical studies revealed school-level CRTs with fewer than 20 clus-
ters. We therefore encourage future researchers to examine power for multilevel designs with
fewer than 20 clusters.

Other decisions made in the design of this simulation study may potentially limit our findings.
For example, we assumed an equal probability of being assigned to treatment or control, such
that P(Tj ¼ 1) ¼ 0.5. This allowed for a balanced design in that the number of clusters in the
treatment group was equal to the number of clusters in the control group. However, CRTs and
randomized control trials more generally may not always have such balance in practice (see Liu,
2003). Thus, findings from this study may or may not replicate in future studies examining vari-
ability in Level 1 sample sizes for unbalanced designs with treatment and control groups differing
on the number of clusters (or units) per group. However, the issue of variable cluster sizes on

684 J. M. KUSH ET AL.



power in CRTs has been understudied in the literature. As a result, there is a need for future
research to examine scenarios in which the number of Level 1 units per cluster is not evenly split
between groups.

Lastly, our study examined effects of unbalanced cluster sizes on power for a relatively simple
two-level, two-group CRT design, in which a single binary treatment indicator was used to esti-
mate the average treatment effect. This model could be extended, for example, by including cova-
riates such as pretest scores at Level 1, while simultaneously accounting for information at Level
2. The inclusion of covariates is a common way to increase the precision and power of a study,
and empirical work has demonstrated that the inclusion of Level 1 or Level 2 covariates produces
similar improvements in power (Bloom et al., 2007; Spybrook et al., 2011). The improvement in
power from the addition of a covariate would likely reduce the required sample size necessary for
a desired level of power, where a reduction in Level 1 sample size would not reduce power as
much as a reduction in Level 2 sample size (Snijders & Bosker, 1993; Spybrook et al., 2011).
Another natural extension to the models considered in this study would be three-level models
(see Dong et al., 2018). While we explored the effects of variability in Level 1 sample sizes and
power estimates in a simplistic two-level CRT design, future work should also explore such vari-
ability for more nuanced modeling approaches and study designs.

Conclusions and implications

These findings highlight the need to carefully consider the impact of variation in the number of
observations at Level 1 when designing CRTs. While different power software and online tools
currently exist for calculating power in multilevel models (e.g., optimal design; Spybrook et al.,
2011), these calculations rely on either the arithmetic average or the harmonic mean number of
units per cluster. Simulation-based estimates of power may offer more flexibility for researchers
designing and planning CRTs than power software and tools utilizing arithmetic average or har-
monic mean calculations. Although we are hesitant to offer a rule of thumb as to when variation
in Level 1 sample sizes becomes large enough to significantly differ from traditional power calcu-
lations, one substantively important framing of this issue involves comparing differences in clus-
ter sample sizes required for differences in power calculations and simulated power. To explore
this, additional power calculations were computed to help answer the question, How many more
(or fewer) clusters are needed to sample for the original calculation of power to match the simu-
lation-based estimate of power? Data representing the difference in number of clusters required
to equal simulated power are presented in Tables A1–A4 in the Appendix.

Across all tables, the majority (71%) of values for the arithmetic calculations are equal to or
less than zero, indicating that fewer clusters are needed to be sampled for the arithmetic calcula-
tion of power to equal the simulation-based estimate of power. For example, Table A2 shows a
scenario with a minimum of five and maximum of 50 units per cluster, an ICC of 0.1, and an
effect size of 0.2 in which it can be seen that six fewer clusters are needed for the original arith-
metic average calculation of power to equal the true simulated power. In this scenario, researchers
entering the average number of units per cluster into a power software calculator would conclude
a value of power greater than the true power. As such, researchers failing to recognize this would
have studies underpowered for what they believed to be the actual power for their studies. By
contrast, the majority (79%) of values for the harmonic calculation were greater than zero, sug-
gesting that the harmonic calculation underestimates true power and that more clusters would
need to be sampled to equal the simulation-based estimate. Again, as an example, the scenario in
Table A3 with a minimum of 10 and maximum of 50 units per cluster, an ICC of 0.05, and an
effect size of 0.3 indicates that an additional seven clusters would need to be sampled for the ori-
ginal harmonic mean calculation of power to equal the true power.
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Along with findings shown in Tables 2–5, the largest differences in the number of clusters required
occurs for a minimum of five and maximum of 50 units per cluster, the scenario with the largest ratio
in cluster size. Differences in cluster sample sizes required for power calculations to match simulation-
based estimates of power were slightly related to original Level 2 sample size (r ¼ �.11), effect size (r
¼ �.18), and the intraclass correlation coefficients (r ¼ �.15). However, differences in the number of
Level 1 units per cluster (i.e., nmax � nmin) were strongly related to differences in required clusters (r ¼
.58). This perspective provides an alternative lens for understanding that variability in cluster sizes is
most strongly associated with differences in the number of clusters required for calculations of power to
match those obtained from simulation-based estimates of power.

Issues related to sampling costs and increased burdens of data collection are directly related to
differences cluster sample sizes. As variability in cluster size increases, researchers must be cogni-
zant of the implications of differences in power estimates that can arise across different methods
for capturing cluster-size differences and the number of Level 2 clusters needed to obtain a
desired level of power. As described elsewhere (Liu, 2003), these aspects of planning CRT designs
will have direct impacts on study costs. Cost calculations would vary depending on the research-
er’s choice of using the arithmetic average (fewer clusters needed) or harmonic mean (more clus-
ters needed) to achieve a desired level of power. By contrast, simulation-based estimates of power
may provide more precision for researchers examining issues of costs and power for CRTs as
well as other multilevel designs.

Taken together, these findings highlight the need for researchers to explicitly investigate char-
acteristics unique to their study design, particularly those related to small and unbalanced cluster
sizes, in light of their potential impact on statistical power. Calculations of power for CRT designs
may over- or underestimate the true power of a model, as such analytic approaches are often
restricted in critical ways. Simulation-based approaches may provide a more nuanced understand-
ing of the impact of these design facets on statistical power within the context of CRTs.
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Appendix A

Table A1. Differences in required clusters sampled for calculated power to equal simulated power with J¼ 20 clusters.

Calculation of Power Using Arithmetic Average

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 0 0 �1 1 0 �1 2 0 0
25 �2 �2 �3 0 �2 �3 �1 �1 �2
50 �3 �5 �5 �3 �4 �4 �3 �2 �3

10 10 0 0 �1 0 0 0 1 0 �1
25 �1 �2 �2 1 0 �1 2 1 �1
50 �2 �3 �3 �1 �2 �2 �1 0 �2

15 10 0 �1 �1 1 0 �1 2 0 �1
25 0 �1 �1 1 0 �1 1 1 0
50 �1 �2 �2 0 �1 �2 2 0 �1

20 10 0 0 �1 1 0 �1 �1 0 �1
25 0 �1 �1 0 0 0 3 1 0
50 �1 �1 �2 0 �1 �1 1 0 �1

30 10 �1 �2 �2 1 �1 �2 2 0 0
25 0 0 �1 0 0 �1 1 1 0
50 0 �1 �2 1 0 �1 2 1 �1

Calculation of Power Using Harmonic Mean
5 10 1 1 0 2 1 0 3 1 0

25 4 5 3 4 2 2 2 2 1
50 8 6 6 4 3 2 1 1 1

10 10 0 0 �1 0 0 0 1 0 �1
25 1 0 0 2 1 0 3 1 0
50 3 2 1 2 1 1 0 1 0

15 10 0 0 0 2 0 �1 2 0 0
25 0 0 �1 1 1 �1 2 1 1
50 1 0 0 2 0 0 2 1 0

20 10 1 1 0 1 1 0 �1 0 0
25 0 �1 �1 0 0 0 3 1 0
50 0 0 0 1 0 �1 2 1 0

30 10 2 0 0 3 1 0 3 1 0
25 0 0 �1 0 0 �1 1 1 0
50 0 �1 �1 1 0 �1 3 1 �1

Note. The maximum number of Level 1 units per cluster has been restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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Table A2. Differences in required clusters sampled for calculated power to equal simulated power with J¼ 30 clusters.

Calculation of Power Using Arithmetic Average

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 1 �2 �1 0 0 �1 1 �1 �1
25 �3 �4 �5 �3 �4 �5 �1 �3 �3
50 �5 �7 �8 �6 �6 �7 �3 �4 �5

10 10 �1 �1 �1 2 �1 �1 3 0 0
25 �1 �2 �3 0 �2 �3 �1 �1 �1
50 �4 �5 �5 �3 �3 �4 �1 �2 �3

15 10 0 �1 �1 1 0 �1 1 0 �1
25 0 0 �2 �1 �1 �2 1 0 �1
50 �3 �3 �4 0 �1 �3 1 �1 �1

20 10 0 �1 �2 0 �2 �1 �1 0 �1
25 0 �1 �1 1 �2 �1 2 0 �1
50 �2 �2 �2 �2 �2 �1 1 0 �1

30 10 �2 �3 �3 �1 �2 �3 1 �1 �2
25 �2 �1 �1 1 0 �1 0 0 �1
50 �1 �1 �1 0 �1 �2 2 0 0

Calculation of Power Using Harmonic Mean
5 10 3 0 1 1 2 0 2 0 0

25 7 7 5 4 3 2 4 1 1
50 12 10 9 5 4 3 3 2 1

10 10 �1 �1 �1 2 �1 �1 3 0 0
25 2 0 0 2 0 �1 0 0 0
50 3 2 2 2 2 1 1 0 0

15 10 1 0 0 1 0 �1 1 0 �1
25 1 0 �1 0 �1 �1 1 0 0
50 1 1 0 2 1 0 2 0 0

20 10 2 0 0 1 �1 0 �1 1 0
25 0 �1 �1 1 �2 �1 2 0 �1
50 0 0 0 0 �1 0 2 0 �1

30 10 2 1 1 2 1 �1 2 0 �1
25 �2 �1 �1 1 0 �1 0 0 �1
50 0 �1 �1 0 �1 �1 2 0 0

Note. The maximum number of Level 1 units per cluster has been restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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Table A3. Differences in required clusters sampled for calculated power to equal simulated power with J¼ 50 clusters.

Calculation of Power Using Arithmetic Average

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 �1 �2 �2 �2 �2 �2 0 �2 0
25 �7 �7 �6 �6 �7 �8 �4 �6 �5
50 �11 �13 �12 �9 �10 �12 �6 �7 �9

10 10 0 �1 0 �2 0 �1 0 �1 �1
25 �3 �4 �3 �3 �3 �3 0 �2 �2
50 �7 �6 �4 �5 �6 �6 �5 �4 �5

15 10 �2 �1 �1 0 �1 �3 1 0 �2
25 �1 0 �1 0 �2 �2 �1 �1 0
50 �5 �5 �5 �5 �3 �3 �1 �4 �3

20 10 0 �3 �3 �3 �1 �2 1 �1 �2
25 0 0 1 �1 �2 �1 0 �1 0
50 �2 �2 �5 �1 �3 �3 0 �2 �3

30 10 �3 �4 �4 �5 �4 �4 �1 �2 �2
25 0 �2 6 1 �1 0 0 �1 0
50 �1 �2 3 �1 �3 �1 0 0 �1

Calculation of Power Using Harmonic Mean
5 10 3 2 2 1 1 1 2 �1 2

25 11 11 12 7 6 4 3 1 2
50 19 17 17 11 9 6 4 3 1

10 10 0 �1 0 �2 0 �1 0 �1 �1
25 3 1 2 0 0 0 2 �1 0
50 6 7 9 2 1 2 �1 0 �1

15 10 �1 0 0 1 0 �2 2 1 �2
25 1 1 1 1 �1 �1 0 �1 0
50 1 1 1 �1 0 0 1 �2 �1

20 10 3 0 0 0 1 0 2 0 �1
25 0 0 1 �1 �2 �1 0 �1 0
50 2 2 �2 1 �1 0 1 �1 �2

30 10 4 3 3 �1 1 1 2 1 0
25 0 �1 6 1 �1 0 0 �1 0
50 0 �1 4 0 �3 0 0 0 �1

Note. The maximum number of Level 1 units per cluster has been"tx restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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Table A4. Differences in required clusters sampled for calculated power to equal simulated power with J¼ 60 clusters.

Calculation of Power Using Arithmetic Average

q ¼ 0.05 q ¼ 0.10 q ¼ 0.20

Min. i/j Max. i/j d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4 d ¼ 0.2 d ¼ 0.3 d ¼ 0.4

5 10 �2 �2 �4 0 �3 �3 �1 �2 �2
25 �8 �9 �8 �9 �10 �9 �4 �5 �7
50 �13 �13 �13 �12 �13 �14 �9 �11 �10

10 10 1 �1 1 �1 �1 0 �1 0 �2
25 �3 �4 �4 �2 �3 �3 �3 �3 �2
50 �8 �7 �8 �8 �7 �8 �4 �5 �3

15 10 �3 �2 0 0 �2 �2 2 �1 �2
25 �2 �2 2 �2 �2 �2 0 �3 �1
50 �4 �5 5 �4 �4 �2 �2 �3 �3

20 10 �3 �3 �2 0 �2 �2 �1 �2 �2
25 �2 �1 5 0 �1 �1 1 �1 �2
50 �4 �4 �1 �2 �5 �1 �2 �2 �2

30 10 �4 �6 �5 �5 �6 �5 �4 �3 �3
25 �1 1 0 0 �1 �3 �1 �1 �1
50 �2 �2 0 �1 0 0 0 �3 1

Calculation of Power Using Harmonic Mean
5 10 3 3 0 3 1 1 1 0 1

25 15 14 14 6 5 6 4 4 2
50 24 24 22 11 9 8 3 1 2

10 10 1 �1 1 �1 �1 0 �1 0 �2
25 4 2 2 2 1 1 0 �1 0
50 7 8 6 1 2 1 1 0 2

15 10 �1 0 1 1 �1 �1 2 �1 �1
25 �1 �1 4 �1 �1 �1 1 �2 0
50 4 3 14 1 0 3 0 �1 0

20 10 1 1 2 3 1 1 0 �1 0
25 �1 0 5 0 �1 �1 1 �1 �2
50 0 0 4 1 �2 2 �1 �1 0

30 10 5 3 3 1 0 1 �1 0 0
25 �1 1 0 0 �1 2 �1 0 �1
50 �1 0 0 0 0 0 0 �2 1

Note. The maximum number of level-1 units per cluster has been restricted to 10, 25, and 50 to condense output. The full
table of results is available by request from the first author.
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